Late emigrating neural crest cells migrate specifically to the exit points of cranial branchiomotor nerves

Development ◽  
1996 ◽  
Vol 122 (8) ◽  
pp. 2367-2374 ◽  
Author(s):  
C. Niederlander ◽  
A. Lumsden

Morphological segmentation of the avian hindbrain into rhombomeres is also reflected by the emergent organisation of branchiomotor nerves. In each case, the motor neurons of these nerves lie in two adjacent rhombomeres (e.g. of the Vth nerve in r2 and r3, VIIth in r4 and r5 etc.), and their outgrowing axons emerge into the periphery through defined exit points in rhombomeres r2, r4 and r6, respectively. Sensory axons of the cranial ganglia also enter the neuroepithelium at the same points. Motor axon outgrowth through experimentally rotated rhombomeres has suggested that a chemoattractive mechanism, involving the exit points, may form a component of their guidance. Yet so far, nothing is known about the establishment of the exit points or the identity of the cells that form them. In this study, we describe a group of late emigrating cranial neural crest cells which populate specifically the prospective exit points. Using chimaeras in which premigratory chick neural crest had been replaced orthotopically by quail cells, a population of neural crest was found to leave the cranial neural tube from about stage 10+ onwards and to migrate directly to the prospective exit points. These cells define the exit points by stage 12+, long before either motor or sensory axons have grown through them. The entire neural crest population of exit point cells expresses the recently described cell adhesion molecule c-cad7. Further, heterotopic grafting experiments show that midbrain and spinal cord crest, grafted at late stages in place of r4 crest, share the same migratory behaviour to the facial nerve exit points and express the same markers as cells contributed by the native r4 crest. It was not possible to generate new exit points in odd numbered rhombomeres simply by experimentally increasing their (normally insignificant) amount of crest production. Initiation of the exit point region probably lies, therefore, in the neuroepithelium.

Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2397-2408 ◽  
Author(s):  
P.A. Trainor ◽  
S.S. Tan ◽  
P.P. Tam

A combination of micromanipulative cell grafting and fluorescent cell labelling techniques were used to examine the developmental fate of the cranial paraxial mesoderm of the 8.5-day early-somite-stage mouse embryo. Mesodermal cells isolated from seven regions of the cranial mesoderm, identified on the basis of their topographical association with specific brain segments were assessed for their contribution to craniofacial morphogenesis during 48 hours of in vitro development. The results demonstrate extensive cell mixing between adjacent but not alternate groups of mesodermal cells and a strict cranial-to-caudal distribution of the paraxial mesoderm to craniofacial structures. A two-segment periodicity similar to the origins of the branchial motor neurons and the distribution of the rhombencephalic neural crest cells was observed as the paraxial mesoderm migrates during formation of the first three branchial arches. The paraxial mesoderm colonises the mesenchymal core of the branchial arches, consistent with the location of the muscle plates. A dorsoventral regionalisation of cell fate similar to that of the somitic mesoderm is also found. This suggests evolution has conserved the fate of the murine cranial paraxial mesoderm as a multiprogenitor population which displays a predominantly myogenic fate. Heterotopic transplantation of cells to different regions of the cranial mesoderm revealed no discernible restriction in cell potency in the craniocaudal axis, reflecting considerable plasticity in the developmental fate of the cranial mesoderm at least at the time of experimentation. The distribution of the different groups of cranial mesoderm matches closely with that of the cranial neural crest cells suggesting the two cell populations may share a common segmental origin and similar destination.


genesis ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Vasker Bhattacherjee ◽  
Partha Mukhopadhyay ◽  
Saurabh Singh ◽  
Emily A. Roberts ◽  
Rita C. Hackmiller ◽  
...  

2010 ◽  
Vol 155 (2) ◽  
pp. 270-279 ◽  
Author(s):  
Dwight R. Cordero ◽  
Samantha Brugmann ◽  
Yvonne Chu ◽  
Ruchi Bajpai ◽  
Maryam Jame ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document