craniofacial development
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 116)

H-INDEX

53
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 953
Author(s):  
Anna Jaruga ◽  
Jakub Ksiazkiewicz ◽  
Krystian Kuzniarz ◽  
Przemko Tylzanowski

Many complex molecular interactions are involved in the process of craniofacial development. Consequently, the network is sensitive to genetic mutations that may result in congenital malformations of varying severity. The most common birth anomalies within the head and neck are orofacial clefts (OFCs) and prognathism. Orofacial clefts are disorders with a range of phenotypes such as the cleft of the lip with or without cleft palate and isolated form of cleft palate with unilateral and bilateral variations. They may occur as an isolated abnormality (nonsyndromic—NSCLP) or coexist with syndromic disorders. Another cause of malformations, prognathism or skeletal class III malocclusion, is characterized by the disproportionate overgrowth of the mandible with or without the hypoplasia of maxilla. Both syndromes may be caused by the presence of environmental factors, but the majority of them are hereditary. Several mutations are linked to those phenotypes. In this review, we summarize the current knowledge regarding the genetics of those phenotypes and describe genotype–phenotype correlations. We then present the animal models used to study these defects.


Author(s):  
Mi Ok Lee ◽  
Jingyi Li ◽  
Brian W Davis ◽  
Srijana Upadhyay ◽  
Hadil M Al Muhisen ◽  
...  

Abstract The high mobility group AT-hook 2 (HMGA2) protein works as an architectural regulator by binding AT-rich DNA sequences to induce conformational changes affecting transcription. Genomic deletions disrupting HMGA2 coding sequences and flanking non-coding sequences cause dwarfism in mice and rabbits. Here, CRISPR/Cas9 was used in mice to generate the Hmga2 null allele that specifically disrupts only the coding sequence. The loss of one or both alleles of Hmga2 resulted in reduced body size of 20% and 60%, respectively, compared to wild-type littermates as well as an allometric reduction in skull length in Hmga2-/- mice. Both male and female Hmga2-/- mice are infertile, whereas Hmga2+/- mice are fertile. Examination of reproductive tissues of Hmga2-/- males revealed a significantly reduced size of testis, epididymis, and seminal vesicle compared to controls, and 70% of knock-out males showed externalized penis, but no cryptorchidism was observed. Sperm analyses revealed severe oligospermia in mutant males and slightly decreased sperm viability, increased DNA damage but normal sperm chromatin compaction. Testis histology surprisingly revealed a normal seminiferous epithelium, despite the significant reduction in testis size. In addition, Hmga2-/- mice showed a significantly reduced exploratory behavior. In summary, the phenotypic effects in mouse using targeted mutagenesis confirmed that Hmga2 is affecting prenatal and postnatal growth regulation, male reproductive tissue development, and presents the first indication that Hmga2 function is required for normal mouse behavior. No specific effect, despite an allometric reduction, on craniofacial development was noted in contrast to previous reports of an altered craniofacial development in mice and rabbits carrying deletions of both coding and non-coding sequences at the 5’part of Hmga2.


2021 ◽  
pp. 002203452110529
Author(s):  
D.A. Cruz Walma ◽  
K.M. Yamada

The extracellular matrix (ECM) is a highly dynamic amalgamation of structural and signaling molecules whose quantitative and qualitative modifications drive the distinct programmed morphologic changes required for tissues to mature into their functional forms. The craniofacial complex houses a diverse array of tissues, including sensory organs, glands, and components of the musculoskeletal, neural, and vascular systems, alongside several other highly specialized tissues to form the most complex part of the vertebrate body. Through cell-ECM interactions, the ECM coordinates the cell movements, shape changes, differentiation, gene expression changes, and other behaviors that sculpt developing organs. In this review, we focus on several common key roles of the ECM to shape developing craniofacial organs and tissues. We summarize recent advances in our understanding of the ability of the ECM to biochemically and biomechanically orchestrate major events of craniofacial development, and we discuss how dysregulated ECM dynamics contributes to disease and disorders. As we expand our understanding of organ-specific matrix functionality and composition, we will improve our ability to rationally modify matrices to promote regeneration and/or prevent degenerative outcomes in vitro and in vivo.


2021 ◽  
pp. 229255032110575
Author(s):  
Tamara A. Franz-Odendaal ◽  
Michael Bezuhly

Background: The last several decades have witnessed an increase in metopic craniosynostosis incidence. Population-based studies suggest that pharmacological exposure in utero may be responsible. This study examined effects of the fertility drug clomiphene citrate (CC) on calvarial development in an established model for craniofacial development, the zebrafish Danio rerio. Results: Zebrafish larvae were exposed to clomiphene citrate or its isomer enclomiphene for five days at key points during calvarial development. Larvae were then raised to adulthood in normal rearing water. Zebrafish were analyzed using whole-mount skeletal staining. We observed differential effects on survivability, growth and suture formation depending on the treatment. Treatments with CC or enclomiphene at 5.5 mm SL led to increased fusion of the interfrontal suture (p < .01) compared to controls. Conclusions: Exposure to fertility drugs appears to affect development of the cranial vault, specifically the interfrontal suture, in zebrafish. Further research is required to identify the signaling mechanisms at play. This work suggests that fertility drug treatment may contribute to the increased incidence of metopic craniosynostosis observed globally.


Author(s):  
David G. Wilkinson

The segregation of distinct cell populations to form sharp boundaries is crucial for stabilising tissue organisation, for example during hindbrain segmentation in craniofacial development. Two types of mechanisms have been found to underlie cell segregation: differential adhesion mediated by cadherins, and Eph receptor and ephrin signalling at the heterotypic interface which regulates cell adhesion, cortical tension and repulsion. An interplay occurs between these mechanisms since cadherins have been found to contribute to Eph-ephrin-mediated cell segregation. This may reflect that Eph receptor activation acts through multiple pathways to decrease cadherin-mediated adhesion which can drive cell segregation. However, Eph receptors mainly drive cell segregation through increased heterotypic tension or repulsion. Cadherins contribute to cell segregation by antagonising homotypic tension within each cell population. This suppression of homotypic tension increases the difference with heterotypic tension triggered by Eph receptor activation, and it is this differential tension that drives cell segregation and border sharpening.


2021 ◽  
Vol 11 (11) ◽  
pp. 1135
Author(s):  
Nityanand Jain ◽  
Mara Pilmane

Craniofacial development including palatogenesis is a complex process which requires an orchestrated and spatiotemporal expression of various genes and factors for proper embryogenesis and organogenesis. One such group of genes essential for craniofacial development is the homeobox genes, transcriptional factors that are commonly associated with congenital abnormalities. Amongst these genes, DLX4, HOXB3, and MSX2 have been recently shown to be involved in the etiology of non-syndromic cleft lip and palate. Hence, we investigated the gene and protein expression of these genes in normal and cleft affected mucosal tissue obtained from 22 children, along with analyzing their role in promoting local-site inflammation using NF-κB. Additionally, we investigated the role of PTX3, which plays a critical role in tissue remodeling and wound repair. We found a residual gene and protein expression of DLX4 in cleft mucosa, although no differences in gene expression levels of HOXB3 and MSX2 were noted. However, a significant increase in protein expression for these genes was noted in the cleft mucosa (p < 0.05), indicating increased cellular proliferation. This was coupled with a significant increase in NF-κB protein expression in cleft mucosa (p < 0.05), highlighting the role of these genes in promotion of pro-inflammatory environment. Finally, no differences in gene expression of PTX3 were noted.


FACE ◽  
2021 ◽  
pp. 273250162110557
Author(s):  
Joseph T. Tarr ◽  
James P. Bradley

Animal models represent an invaluable tool, which must be judiciously used to provide the greatest benefit to human kind, due to their cost and time effectiveness. The CCN2 null mouse model described in this paper represents a new murine model of craniofacial development. This model is notable for its remarkably consistent phenotype and ease of colony care and propagation. The interaction of CCN2 with the TGF-β, BMP, FGF, EGF, Integrin, and WNT proteins is currently under investigated and signifies a plethora of research opportunities that may help elucidate novel therapeutic options for future patients. This paper presents a descriptive overview of the known craniofacial developmental abnormalities of this model as well as the known molecular signaling aberrances that provide clues to direct future investigative endeavors.


Sign in / Sign up

Export Citation Format

Share Document