Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5

Development ◽  
1998 ◽  
Vol 125 (21) ◽  
pp. 4155-4162 ◽  
Author(s):  
S. Tajbakhsh ◽  
U. Borello ◽  
E. Vivarelli ◽  
R. Kelly ◽  
J. Papkoff ◽  
...  

Activation of myogenesis in newly formed somites is dependent upon signals derived from neighboring tissues, namely axial structures (neural tube and notochord) and dorsal ectoderm. In explants of paraxial mesoderm from mouse embryos, axial structures preferentially activate myogenesis through a Myf5-dependent pathway and dorsal ectoderm preferentially through a MyoD-dependent pathway. Here we report that cells expressing Wnt1 will preferentially activate Myf5 while cells expressing Wnt7a will preferentially activate MyoD. Wnt1 is expressed in the dorsal neural tube and Wnt7a in dorsal ectoderm in the early embryo, therefore both can potentially act in vivo to activate Myf5 and MyoD, respectively. Wnt4, Wnt5a and Wnt6 exert an intermediate effect activating both Myf5 and MyoD equivalently in paraxial mesoderm. Sonic Hedgehog synergises with both Wnt1 and Wnt7a in explants from E8.5 paraxial mesoderm but not in explants from E9.5 embryos. Signaling through different myogenic pathways may explain the rescue of muscle formation in Myf5 null embryos, which do not form an early myotome but later develop both epaxial and hypaxial musculature. Explants of unsegmented paraxial mesoderm contain myogenic precursors capable of expressing MyoD in response to signaling from a neural tube isolated from E10.5 embryos, the developmental stage when MyoD is present throughout the embryo. Myogenic cells cannot activate MyoD in response to signaling from a less mature neural tube. Together these data suggest that different Wnt molecules can activate myogenesis through different pathways such that commitment of myogenic precursors is precisely regulated in space and time to achieve the correct pattern of skeletal muscle development.

Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 231-241 ◽  
Author(s):  
M.S. Spence ◽  
J. Yip ◽  
C.A. Erickson

Somites, like all axial structures, display dorsoventral polarity. The dorsal portion of the somite forms the dermamyotome, which gives rise to the dermis and axial musculature, whereas the ventromedial somite disperses to generate the sclerotome, which later comprises the vertebrae and intervertebral discs. Although the neural tube and notochord are known to regulate some aspects of this dorsoventral pattern, the precise tissues that initially specify the dermamyotome, and later the myotome from it, have been controversial. Indeed, dorsal and ventral neural tube, notochord, ectoderm and neural crest cells have all been proposed to influence dermamyotome formation or to regulate myocyte differentiation. In this report we describe a series of experimental manipulations in the chick embryo to show that dermamyotome formation is regulated by interactions with the dorsal neural tube. First, we demonstrate that when a neural tube is rotated 180 degrees around its dorsoventral axis, a secondary dermamyotome is induced from what would normally have developed as sclerotome. Second, if we ablate the dorsal neural tube, dermamyotomes are absent in the majority of embryos. Third, if we graft pieces of dorsal neural tube into a ventral position between the notochord and ventral somite, a dermamyotome develops from the sclerotome that is proximate to the graft, and myocytes differentiate. In addition, we also show that myogenesis can be regulated by the dorsal neural tube because when pieces of dorsal neural tube and unsegmented paraxial mesoderm are combined in tissue culture, myocytes differentiate, whereas mesoderm cultures alone do not produce myocytes autonomously. In all of the experimental perturbations in vivo, the dorsal neural tube induced dorsal structures from the mesoderm in the presence of notochord and floorplate, which have been reported previously to induce sclerotome. Thus, we have demonstrated that in the context of the embryonic environment, a dorsalizing signal from the dorsal neural tube can compete with the diffusible ventralizing signal from the notochord. In contrast to dorsal neural tube, pieces of ventral neural tube, dorsal ectoderm or neural crest cells, all of which have been postulated to control dermamyotome formation or to induce myogenesis, either fail to do so or provoke only minimal inductive responses in any of our assays. However, complicating the issue, we find consistent with previous studies that following ablation of the entire neural tube, dermamyotome formation still proceeds adjacent to the dorsal ectoderm. Together these results suggest that, although dorsal ectoderm may be less potent than the dorsal neural tube in inducing dermamyotome, it does nonetheless possess some dermamyotomal-inducing activity. Based on our data and that of others, we propose a model for somite dorsoventral patterning in which competing diffusible signals from the dorsal neural tube and from the notochord/floorplate specify dermamyotome and sclerotome, respectively. In our model, the positioning of the dermamyotome dorsally is due to the absence or reduced levels of the notochord-derived ventralizing signals, as well as to the presence of dominant dorsalizing signals. These dorsal signals are possibly localized and amplified by binding to the basal lamina of the ectoderm, where they can signal the underlying somite, and may also be produced by the ectoderm as well.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3675-3686 ◽  
Author(s):  
H.M. Stern ◽  
A.M. Brown ◽  
S.D. Hauschka

Previous studies have demonstrated that the neural tube/notochord complex is required for skeletal muscle development within somites. In order to explore the localization of myogenic inducing signals within the neural tube, dorsal or ventral neural tube halves were cultured in contact with single somites or pieces of segmental plate mesoderm. Somites and segmental plates cultured with the dorsal half of the neural tube exhibited 70% and 85% myogenic response rates, as determined by immunostaining for myosin heavy chain. This response was slightly lower than the 100% response to whole neural tube/notochord, but was much greater than the 30% and 10% myogenic response to ventral neural tube with and without notochord. These results demonstrate that the dorsal neural tube emits a potent myogenic inducing signal which accounts for most of the inductive activity of whole neural tube/notochord. However, a role for ventral neural tube/notochord in somite myogenic induction was clearly evident from the larger number of myogenic cells induced when both dorsal neural tube and ventral neural tube/notochord were present. To address the role of a specific dorsal neural tube factor in somite myogenic induction, we tested the ability of Wnt-1-expressing fibroblasts to promote paraxial mesoderm myogenesis in vitro. We found that cells expressing Wnt-1 induced a small number of somite and segmental plate cells to undergo myogenesis. This finding is consistent with the localized dorsal neural tube inductive activity described above, but since the ventral neural tube/notochord also possesses myogenic inductive capacity yet does not express Wnt-1, additional inductive factors are likely involved.


Development ◽  
1999 ◽  
Vol 126 (8) ◽  
pp. 1665-1674 ◽  
Author(s):  
A.G. Borycki ◽  
J. Li ◽  
F. Jin ◽  
C.P. Emerson ◽  
J.A. Epstein

In developing vertebrate embryos, Pax3 is expressed in the neural tube and in the paraxial mesoderm that gives rise to skeletal muscles. Pax3 mutants develop muscular and neural tube defects; furthermore, Pax3 is essential for the proper activation of the myogenic determination factor gene, MyoD, during early muscle development and PAX3 chromosomal translocations result in muscle tumors, providing evidence that Pax3 has diverse functions in myogenesis. To investigate the specific functions of Pax3 in development, we have examined cell survival and gene expression in presomitic mesoderm, somites and neural tube of developing wild-type and Pax3 mutant (Splotch) mouse embryos. Disruption of Pax3 expression by antisense oligonucleotides significantly impairs MyoD activation by signals from neural tube/notochord and surface ectoderm in cultured presomitic mesoderm (PSM), and is accompanied by a marked increase in programmed cell death. In Pax3 mutant (Splotch) embryos, MyoD is activated normally in the hypaxial somite, but MyoD-expressing cells are disorganized and apoptosis is prevalent in newly formed somites, but not in the neural tube or mature somites. In neural tube and somite regions where cell survival is maintained, the closely related Pax7 gene is upregulated, and its expression becomes expanded into the dorsal neural tube and somites, where Pax3 would normally be expressed. These results establish that Pax3 has complementary functions in MyoD activation and inhibition of apoptosis in the somitic mesoderm and in repression of Pax7 during neural tube and somite development.


Development ◽  
1996 ◽  
Vol 122 (2) ◽  
pp. 429-437 ◽  
Author(s):  
G. Cossu ◽  
R. Kelly ◽  
S. Tajbakhsh ◽  
S. Di Donna ◽  
E. Vivarelli ◽  
...  

Newly formed somites or unsegmented paraxial mesoderm (UPM) have been cultured either in isolation or with adjacent structures to investigate the influence of these tissues on myogenic differentiation in mammals. The extent of differentiation was easily and accurately quantified by counting the number of beta-galactosidase-positive cells, since mesodermal tissues had been isolated from transgenic mice that carry the n-lacZ gene under the transcriptional control of a myosin light chain promoter, restricting expression to striated muscle. The results obtained showed that axial structures are necessary to promote differentiation of paraxial mesoderm, in agreement with previous observations. However, it also appeared that the influence of axial structures could be replaced by dorsolateral tissues, adjacent to the paraxial mesoderm. To elucidate which of these tissues exerts this positive effect, we cultured the paraxial mesoderm with a variety of adjacent structures, either adherent to the mesoderm or recombined in vitro. The results of these experiments indicated that the dorsal ectoderm exerts a positive influence on myogenesis but only if left in physical proximity to it. In contrast, lateral mesoderm delays the positive effect of the ectoderm (and has no effect on its own) suggesting that this tissue produces an inhibitory signal. To investigate whether axial structures and dorsal ectoderm induce myogenesis through common or separate pathways, we dissected the medial half of the unsegmented paraxial mesoderm and cultured it with the adjacent neural tube. We also cultured the lateral half of the unsegmented paraxial mesoderm with adjacent ectoderm. The induction of the myogenic regulatory factors myf-5 and MyoD was monitored by double staining of cultured cells with antibodies against MyoD and beta-galactosidase since the tissues were isolated from mouse embryos that carry n-lacZ targeted to the myf-5 gene, so that myf-5 expressing cells could be easily identified by either histochemical or immunocytochemical staining for beta-galactosidase. After 1 day in culture myogenic cells from the medial half expressed myf-5 but not MyoD, while myogenic cells from the lateral half expressed MyoD but not myf-5. By the next day in vitro, however, most myogenic cells expressed both gene products. These data suggest that the neural tube activates myogenesis in the medial half of paraxial mesoderm through a myf-5-dependent pathway, while the dorsal ectoderm activates myogenesis through a MyoD-dependent pathway. The possible developmental significance of these observations is discussed and a model of myogenic determination in mammals is proposed.


Development ◽  
1997 ◽  
Vol 124 (18) ◽  
pp. 3511-3523 ◽  
Author(s):  
H.M. Stern ◽  
J. Lin-Jones ◽  
S.D. Hauschka

Development of the myotome within somites depends on unknown signals from the neural tube. The present study tested the ability of basic fibroblast growth factor (bFGF), transforming growth factor-beta1 (TGF-beta1) and dorsalin-1 (dsl-1) to promote myogenesis in stage 10–14 chick paraxial mesoderm utilizing 72 hour explant cultures. Each of these factors alone and the combination of bFGF with dsl-1 had limited to no myogenic-promoting activity, but the combination of bFGF with TGF-beta1 demonstrated a potent dose-dependent effect. In addition, bFGF enhanced the survival/proliferation of somite cells. 98% of stage 10–11 caudal segmental plate explants treated with bFGF plus TGF-beta1, exhibited myosin heavy chain (MHC)-positive cells (avg.=60 per explant), whereas only 15% of similarly treated somites responded with an average of 5 MHC-positive cells. Thus at stage 10–11, there are rostrocaudal differences in myogenic responsiveness with the caudal (more ‘immature’) paraxial mesoderm being more myogenically responsive to these factors than are somites. It was also discovered that 17% of stage 10–11 caudal segmental plate explants exhibited several MHC-positive cells even when cultured without added growth factors, further demonstrating a different myogenic potential of the caudal paraxial mesoderm. Stage 13–14 paraxial mesoderm also exhibited a myogenic response to bFGF/TGF-beta1 but, unlike stage 10–11 embryos, both somites and segmental plate exhibited a strong response. A two-step mechanism for the bFGF/TGF-beta1 effect is suggested by the finding that only TGF-beta1 was required during the first 12 hours of culture, whereas bFGF plus a TGF-beta-like factor were required for the remainder of the culture. The biological relevance of the findings with bFGF is underscored by the observation that a monoclonal antibody to bFGF inhibited myogenic signaling from the dorsal neural tube. However, a monoclonal antibody that can neutralize the three factors TGF-beta1, TGF-beta2 and TGF-beta3 did not block myogenic signals from the neural tube, raising the possibility that another TGF-beta family member may be involved in vivo.


Development ◽  
2000 ◽  
Vol 127 (22) ◽  
pp. 4845-4854 ◽  
Author(s):  
D. Sela-Donenfeld ◽  
C. Kalcheim

We have previously shown that axial-dependent delamination of specified neural crest cells is triggered by BMP4 and negatively regulated by noggin. Increasing activity of BMP4 towards the rostral part of the axis is achieved by graded expression of noggin in the dorsal neural tube, the latter being high opposite unsegmented mesoderm, and progressively downregulated facing epithelial and dissociating somites, coinciding in time and axial level with initial delamination of neural crest cells (Sela-Donenfeld, D. and Kalcheim, C. (1999) Development 126, 4749–4762). Here we report that this gradient-like expression of noggin in the neuroepithelium is controlled by the paraxial mesoderm. Deletion of epithelial somites prevented normal downregulation of noggin in the neural tube. Furthermore, partial ablation of either the dorsal half or only the dorsomedial portion of epithelial somites was sufficient to maintain high noggin expression. In contrast, deletion of the segmental plate had no effect. These data suggest that the dorsomedial region of developing somites produces an inhibitor of noggin transcription in the dorsal neural tube. Consistent with this notion, grafting dissociating somites in the place of the unsegmented mesoderm precociously downregulated the expression of noggin and triggered premature emigration of neural crest progenitors from the caudal neural tube. Thus, opposite the unsegmented mesoderm, where noggin expression is high in the neural tube, BMP4 is inactive and neural crest cells fail to delaminate. Upon somitogenesis and further dissociation, the dorsomedial portion of the somite inhibits noggin transcription. Progressive loss of noggin activity releases BMP4 from inhibition, resulting in crest cell emigration. We propose that this inhibitory crosstalk between paraxial mesoderm and neural primordium controls the timing of neural crest delamination to match the development of a suitable mesodermal substrate for subsequent crest migration.


2019 ◽  
Author(s):  
Abdulmajeed Fahad Alrefaei ◽  
Andrea E. Münsterberg ◽  
Grant N. Wheeler

AbstractWnt/FZD signalling activity is required for spinal cord development, including the dorsal-ventral patterning of the neural tube, where it affects proliferation and specification of neurons. Wnt ligands initiate canonical, β-catenin-dependent, signaling by binding to Frizzled receptors. However, in many developmental contexts the cognate FZD receptor for a particular Wnt ligand remains to be identified. Here, we characterized FZD10 expression in the dorsal neural tube where it overlaps with both Wnt1 and Wnt3a, as well as markers of dorsal progenitors and interneurons. We show FZD10 expression is sensitive to Wnt1, but not Wnt3a expression, and FZD10 plays a role in neural tube patterning. Knockdown approaches show that Wnt1 induced ventral expansion of dorsal neural markes, Pax6 and Pax7, requires FZD10. In contrast, Wnt3a induced dorsalization of the neural tube is not affected by FZD10 knockdown. Gain of function experiments show that FZD10 is not sufficient on its own to mediate Wnt1 activity in vivo. Indeed excess FZD10 inhibits the dorsalizing activity of Wnt1. However, addition of the Lrp6 co-receptor dramatically enhances the Wnt1/FZD10 mediated activation of dorsal markers. This suggests that the mechanism by which Wnt1 regulates proliferation and patterning in the neural tube requires both FZD10 and Lrp6.


Development ◽  
1997 ◽  
Vol 124 (13) ◽  
pp. 2507-2513 ◽  
Author(s):  
Y. Wang ◽  
R. Jaenisch

The myogenic basic Helix-Loop-Helix transcription factors, including Myf5, MyoD, myogenin (myg) and MRF4, play important roles in skeletal muscle development. The phenotypes of mutant mice deficient in either gene are different, suggesting that each gene may have a unique function in vivo. We previously showed that targeting myogenin into the Myf5 locus (Myf5(myg-ki)) rescued the rib cage truncation in the Myf5-null mutant, hence demonstrating functional redundancy between Myf5 and myogenin in skeletal morphogenesis. Here we present the results of crossing myogenin knock-in (myg-ki) mice with either MyoD-null or myogenin-null mutants. The Myf5(myg-ki) allele rescued early myogenesis, but Myf5(myg-ki/myg-ki);MyoD(−/−) mutant mice died immediately after birth owing to reduced muscle formation. Therefore, myogenin, expressed from the Myf5 locus, is not able to completely replace the function of Myf5 in muscle development although it is capable of determining and/or maintaining myogenic lineage. Myf5(myg-ki/myg-ki);myg(−/−) mutant mice displayed the same phenotype as myg(−/−) mutants. This indicates that the earlier expression of myogenin cannot promote myogenic terminal differentiation, which is normally initiated by the endogenous myogenin. Thus, our results are consistent with the notion that Myf5 and myogenin are functionally interchangeable in determining myogenic lineage and assuring normal rib formation. Our experiment revealed, however, that some aspects of myogenesis may be unique to a given myogenic factor and are due to either different regulatory sequences that control their temporal and spatial expression or different functional protein domains.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4749-4762 ◽  
Author(s):  
D. Sela-Donenfeld ◽  
C. Kalcheim

For neural crest cells to engage in migration, it is necessary that epithelial premigratory crest cells convert into mesenchyme. The mechanisms that trigger cell delamination from the dorsal neural tube remain poorly understood. We find that, in 15- to 40-somite-stage avian embryos, BMP4 mRNA is homogeneously distributed along the longitudinal extent of the dorsal neural tube, whereas its specific inhibitor noggin exists in a gradient of expression that decreases caudorostrally. This rostralward reduction in signal intensity coincides with the onset of emigration of neural crest cells. Hence, we hypothesized that an interplay between Noggin and BMP4 in the dorsal tube generates graded concentrations of the latter that in turn triggers the delamination of neural crest progenitors. Consistent with this suggestion, disruption of the gradient by grafting Noggin-producing cells dorsal to the neural tube at levels opposite the segmental plate or newly formed somites, inhibited emigration of HNK-1-positive crest cells, which instead accumulated within the dorsal tube. Similar results were obtained with explanted neural tubes from the same somitic levels exposed to Noggin. Exposure to Follistatin, however, had no effect. The Noggin-dependent inhibition was overcome by concomitant treatment with BMP4, which when added alone, also accelerated cell emigration compared to untreated controls. Furthermore, the observed inhibition of neural crest emigration in vivo was preceded by a partial or total reduction in the expression of cadherin-6B and rhoB but not in the expression of slug mRNA or protein. Altogether, these results suggest that a coordinated activity of Noggin and BMP4 in the dorsal neural tube triggers delamination of specified, slug-expressing neural crest cells. Thus, BMPs play multiple and discernible roles at sequential stages of neural crest ontogeny, from specification through delamination and later differentiation of specific neural crest derivatives.


2017 ◽  
Author(s):  
Jérome Chal ◽  
Ziad Al Tanoury ◽  
Masayuki Oginuma ◽  
Philippe Moncuquet ◽  
Bénédicte Gobert ◽  
...  

AbstractIn vertebrates, body skeletal muscles and axial skeleton derive from the paraxial mesoderm which flanks the neural tube and notochord. The paraxial mesoderm forms in the posterior region of the embryo as presomitic mesoderm (PSM), which generates the embryonic segments called somites. Here, we characterized gene signatures identified using microarray series from the mouse PSM and compared the PSM transcriptome dynamics to that of the developing neural tube. In contrast to the PSM where an abrupt transcriptome reorganisation occurs at the level of the determination front, we show that transcriptome changes are progressive during parallel stages of neural tube differentiation. We show that these early differentiation stages of the paraxial mesoderm can be efficiently recapitulated in monolayer culture in vitro using murine Embryonic Stem (ES) cells. We describe a serum-containing protocol which parallels in vivo tissue maturation allowing differentiation of ES cells towards a paraxial mesoderm fate. We show that R-spondin treatment or Wnt activation alone can induce posterior PSM markers in both mouse and human ES/iPS cells but acquisition of a committed posterior PSM fate requires BMP inhibition to prevent induced cells to drift to a lateral plate mesoderm identity. We show that posterior PSM-like cells induced from mouse ES cells can be further differentiated in vitro to acquire an anterior PSM Pax3-positive identity. When grafted into injured adult muscle, these induced PSM-like precursors generated large numbers of immature muscle fibers. We further show that exposing ES-derived PSM-like cells to a brief FGF inhibition step followed by culture in horse serum-containing medium allows efficient recapitulation of the myogenic program. Differentiating ES cells first produce mononucleated embryonic myocytes and subsequently multinucleated myotubes, as well as Pax7-positive cells. The protocol described here results in improved differentiation and maturation of mouse muscle fibers differentiated in vitro over serum-free protocols. It provides an efficient system for the study of myogenic processes otherwise difficult to study in vivo such as fusion or satellite cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document