dorsal ectoderm
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 1)

H-INDEX

12
(FIVE YEARS 0)

Zygote ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ho Chi Leung ◽  
Catherine Leclerc ◽  
Marc Moreau ◽  
Alan M. Shipley ◽  
Andrew L. Miller ◽  
...  

Summary It has previously been reported that in ex vivo planar explants prepared from Xenopus laevis embryos, the intracellular pH (pHi) increases in cells of the dorsal ectoderm from stage 10.5 to 11.5 (i.e. 11–12.5 hpf). It was proposed that such increases (potentially due to H+ being extruded, sequestered, or buffered in some manner), play a role in regulating neural induction. Here, we used an extracellular ion-selective electrode to non-invasively measure H+ fluxes at eight locations around the equatorial circumference of intact X. laevis embryos between stages 9–12 (˜7–13.25 hpf). We showed that at stages 9–11, there was a small H+ efflux recorded from all the measuring positions. At stage 12 there was a small, but significant, increase in the efflux of H+ from most locations, but the efflux from the dorsal side of the embryo was significantly greater than from the other positions. Embryos were also treated from stages 9–12 with bafilomycin A1, to block the activity of the ATP-driven H+ pump. By stage 22 (24 hpf), these embryos displayed retarded development, arresting before the end of gastrulation and therefore did not display the usual anterior and neural structures, which were observed in the solvent-control embryos. In addition, expression of the early neural gene, Zic3, was absent in treated embryos compared with the solvent controls. Together, our new in vivo data corroborated and extended the earlier explant-derived report describing changes in pHi that were suggested to play a role during neural induction in X. laevis embryos.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Oliver A Krupke ◽  
Ivona Zysk ◽  
Dan O Mellott ◽  
Robert D Burke

The mechanisms that underlie directional cell migration are incompletely understood. Eph receptors usually guide migrations of cells by exclusion from regions expressing Ephrin. In sea urchin embryos, pigmented immunocytes are specified in vegetal epithelium, transition to mesenchyme, migrate, and re-enter ectoderm, distributing in dorsal ectoderm and ciliary band, but not ventral ectoderm. Immunocytes express Sp-Eph and Sp-Efn is expressed throughout dorsal and ciliary band ectoderm. Interfering with expression or function of Sp-Eph results in rounded immunocytes entering ectoderm but not adopting a dendritic form. Expressing Sp-Efn throughout embryos permits immunocyte insertion in ventral ectoderm. In mosaic embryos, immunocytes insert preferentially in ectoderm expressing Sp-Efn. We conclude that Sp-Eph signaling is necessary and sufficient for epithelial insertion. As well, we propose that immunocytes disperse when Sp-Eph enhances adhesion, causing haptotactic movement to regions of higher ligand abundance. This is a distinctive example of Eph/Ephrin signaling acting positively to pattern migrating cells.


2010 ◽  
Vol 36 (1) ◽  
pp. 9-22 ◽  
Author(s):  
M. M. Al-Qattan

The various Wnt pathways that are related to upper limb anomalies are reviewed. Abnormalities in the Wnt7a pathway (located in the dorsal ectoderm) produce several clinically relevant conditions such as the palmar duplication syndrome, nail patella syndrome, ulnar ray deficiency, limb hypoplasia, polysyndactyly and the palmar nail syndrome. Abnormalities of the Wnt3/3a pathway (located in the apical ectodermal ridge) include tetra-amelia and loss of the distal phalanges/nails. Abnormalities of the Wnt5/5a pathway (located in the apical ectodermal ridge as well as in the mesoderm) will affect chondrogenesis of the developing limb and experimental Wnt5a−/− limbs have terminal adactyly. Chondrogenesis and limb muscle differentiation are both affected by several Wnt pathways and these will be reviewed in details. Abnormalities in LRP 5/6 (a co-receptor for Wnts) lead to congenital bone disease and Wnt4 is specifically involved in joint development. Finally, the relationship between the Wnt pathway and SALL4 (mutations of which cause Okihiro/Duane-radial ray deficiency in humans) are discussed.


Development ◽  
2002 ◽  
Vol 129 (13) ◽  
pp. 3241-3253 ◽  
Author(s):  
Aymeric Chartier ◽  
Stéphane Zaffran ◽  
Martine Astier ◽  
Michel Sémériva ◽  
Danielle Gratecos

The steps that lead to the formation of a single primitive heart tube are highly conserved in vertebrate and invertebrate embryos. Concerted migration of the two lateral cardiogenic regions of the mesoderm and endoderm (or ectoderm in invertebrates) is required for their fusion at the midline of the embryo. Morphogenetic signals are involved in this process and the extracellular matrix has been proposed to serve as a link between the two layers of cells.Pericardin (Prc), a novel Drosophila extracellular matrix protein is a good candidate to participate in heart tube formation. The protein has the hallmarks of a type IV collagen α-chain and is mainly expressed in the pericardial cells at the onset of dorsal closure. As dorsal closure progresses, Pericardin expression becomes concentrated at the basal surface of the cardioblasts and around the pericardial cells, in close proximity to the dorsal ectoderm. Pericardin is absent from the lumen of the dorsal vessel.Genetic evidence suggests that Prc promotes the proper migration and alignment of heart cells. Df(3)vin6 embryos, as well as embryos in which prc has been silenced via RNAi, exhibit similar and significant defects in the formation of the heart epithelium. In these embryos, the heart epithelium appears disorganized during its migration to the dorsal midline. By the end of embryonic development, cardial and pericardial cells are misaligned such that small clusters of both cell types appear in the heart; these clusters of cells are associated with holes in the walls of the heart. A prc transgene can partially rescue each of these phenotypes, suggesting that prc regulates these events. Our results support, for the first time, the function of a collagen-like protein in the coordinated migration of dorsal ectoderm and heart cells.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 685-692 ◽  
Author(s):  
S J Newfeld ◽  
N T Takaesu

Abstract Our laboratory has contributed to the development of a genetic system based upon the hobo transposable element in Drosophila melanogaster. We recently reported that hobo, like the better-known P element, is capable of local transposition. In that study, we mobilized a hobo enhancer trap vector and generated two unique alleles of decapentaplegic (dpp), a transforming growth factor-β family member with numerous roles during development. Here we report a detailed study of one of those alleles (dppF11). To our knowledge, this is the first application of the hobo genetic system to understanding developmental processes. First, we demonstrate that lacZ expression from the dppF11 enhancer trap accurately reflects dpp mRNA accumulation in leading edge cells of the dorsal ectoderm. Then we show that combinatorial signaling by the Wingless (Wg) pathway, the Dpp pathway, and the transcriptional coactivator Nejire (CBP/p300) regulates dppF11 expression in these cells. Our analysis of dppF11 suggests a model for the integration of Wg and Dpp signals that may be applicable to other developmental systems. Our analysis also illustrates several new features of the hobo genetic system and highlights the value of hobo, as an alternative to P, in addressing developmental questions.


Development ◽  
2002 ◽  
Vol 129 (10) ◽  
pp. 2317-2327 ◽  
Author(s):  
Motoyuki Itoh ◽  
Tetsuhiro Kudoh ◽  
Michael Dedekian ◽  
Cheol-Hee Kim ◽  
Ajay B. Chitnis

We have identified a novel Iroquois (Iro) gene, iro7, in zebrafish. iro7 is expressed during gastrulation along with iro1 in a compartment of the dorsal ectoderm that includes the prospective midbrain-hindbrain domain, the adjacent neural crest and the trigeminal placodes in the epidermis. The iro1 and iro7 expression domain is expanded in headless and masterblind mutants, which are characterized by exaggerated Wnt signaling. Early expansion of iro1 and iro7 expression in these mutants correlates with expansion of the midbrain-hindbrain boundary (MHB) domain, the neural crest and trigeminal neurons, raising the possibility that iro1 and iro7 have a role in determination of these ectodermal derivatives. A knockdown of iro7 function revealed that iro7 is essential for the determination of neurons in the trigeminal placode. In addition, a knockdown of both iro1 and iro7 genes uncovered their essential roles in neural crest development and establishment of the isthmic organizer at the MHB. These results suggest a new role for Iro genes in establishment of an ectodermal compartment after Wnt signaling in vertebrate development. Furthermore, analysis of activator or repressor forms of iro7 suggests that iro1 and iro7 are likely to function as repressors in establishment of the isthmic organizer and neural crest, and Iro genes may have dual functions as repressors and activators in neurogenesis.


Development ◽  
2001 ◽  
Vol 128 (15) ◽  
pp. 2905-2913 ◽  
Author(s):  
Beth E. Stronach ◽  
Norbert Perrimon

The leading edge (LE) is a single row of cells in the Drosophila embryonic epidermis that marks the boundary between two fields of cells: the amnioserosa and the dorsal ectoderm. LE cells play a crucial role in the morphogenetic process of dorsal closure and eventually form the dorsal midline of the embryo. Mutations that block LE differentiation result in a failure of dorsal closure and embryonic lethality. How LE cells are specified remains unclear. To explore whether LE cells are specified in response to early dorsoventral patterning information or whether they arise secondarily, we have altered the extent of amnioserosa and dorsal ectoderm genetically, and assayed LE cell fate. We did not observe an expansion of LE fate in dorsalized or ventralized mutants. Furthermore, we observed that the LE fate arises as a single row of cells, wherever amnioserosa tissue and dorsal epidermis are physically juxtaposed. Taken together our data indicate that LE formation is a secondary consequence of early zygotic dorsal patterning signals. In particular, proper LE specification requires the function of genes such as u-shaped and hindsight, which are direct transcriptional targets of the early Decapentaplegic/Screw patterning gradient, to establish a competency zone from which LE arises. We propose that subsequent inductive signaling between amnioserosa and dorsal ectoderm restricts the formation of LE to a single row of cells.


Development ◽  
2000 ◽  
Vol 127 (16) ◽  
pp. 3631-3644
Author(s):  
H. Araujo ◽  
E. Bier

The short gastrulation (sog) and decapentaplegic (dpp) genes function antagonistically in the early Drosophila zygote to pattern the dorsoventral (DV) axis of the embryo. This interplay between sog and dpp determines the extent of the neuroectoderm and subdivides the dorsal ectoderm into two territories. Here, we present evidence that sog and dpp also play opposing roles during oogenesis in patterning the DV axis of the embryo. We show that maternally produced Dpp increases levels of the I(kappa)B-related protein Cactus and reduces the magnitude of the nuclear concentration gradient of the NF(kappa)B-related Dorsal protein, and that Sog limits this effect. We present evidence suggesting that Dpp signaling increases Cactus levels by reducing a signal-independent component of Cactus degradation. Epistasis experiments reveal that sog and dpp act downstream of, or in parallel to, the Toll receptor to reduce translocation of Dorsal protein into the nucleus. These results broaden the role previously defined for sog and dpp in establishing the embryonic DV axis and reveal a novel form of crossregulation between the NF(kappa)B and TGF(beta) signaling pathways in pattern formation.


Development ◽  
2000 ◽  
Vol 127 (15) ◽  
pp. 3305-3312 ◽  
Author(s):  
H.L. Ashe ◽  
M. Mannervik ◽  
M. Levine

The dorsal ectoderm of the Drosophila embryo is subdivided into different cell types by an activity gradient of two TGF(β) signaling molecules, Decapentaplegic (Dpp) and Screw (Scw). Patterning responses to this gradient depend on a secreted inhibitor, Short gastrulation (Sog) and a newly identified transcriptional repressor, Brinker (Brk), which are expressed in neurogenic regions that abut the dorsal ectoderm. Here we examine the expression of a number of Dpp target genes in transgenic embryos that contain ectopic stripes of Dpp, Sog and Brk expression. These studies suggest that the Dpp/Scw activity gradient directly specifies at least three distinct thresholds of gene expression in the dorsal ectoderm of gastrulating embryos. Brk was found to repress two target genes, tailup and pannier, that exhibit different limits of expression within the dorsal ectoderm. These results suggest that the Sog inhibitor and Brk repressor work in concert to establish sharp dorsolateral limits of gene expression. We also present evidence that the activation of Dpp/Scw target genes depends on the Drosophila homolog of the CBP histone acetyltransferase.


Sign in / Sign up

Export Citation Format

Share Document