The dorsal neural tube organizes the dermamyotome and induces axial myocytes in the avian embryo

Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 231-241 ◽  
Author(s):  
M.S. Spence ◽  
J. Yip ◽  
C.A. Erickson

Somites, like all axial structures, display dorsoventral polarity. The dorsal portion of the somite forms the dermamyotome, which gives rise to the dermis and axial musculature, whereas the ventromedial somite disperses to generate the sclerotome, which later comprises the vertebrae and intervertebral discs. Although the neural tube and notochord are known to regulate some aspects of this dorsoventral pattern, the precise tissues that initially specify the dermamyotome, and later the myotome from it, have been controversial. Indeed, dorsal and ventral neural tube, notochord, ectoderm and neural crest cells have all been proposed to influence dermamyotome formation or to regulate myocyte differentiation. In this report we describe a series of experimental manipulations in the chick embryo to show that dermamyotome formation is regulated by interactions with the dorsal neural tube. First, we demonstrate that when a neural tube is rotated 180 degrees around its dorsoventral axis, a secondary dermamyotome is induced from what would normally have developed as sclerotome. Second, if we ablate the dorsal neural tube, dermamyotomes are absent in the majority of embryos. Third, if we graft pieces of dorsal neural tube into a ventral position between the notochord and ventral somite, a dermamyotome develops from the sclerotome that is proximate to the graft, and myocytes differentiate. In addition, we also show that myogenesis can be regulated by the dorsal neural tube because when pieces of dorsal neural tube and unsegmented paraxial mesoderm are combined in tissue culture, myocytes differentiate, whereas mesoderm cultures alone do not produce myocytes autonomously. In all of the experimental perturbations in vivo, the dorsal neural tube induced dorsal structures from the mesoderm in the presence of notochord and floorplate, which have been reported previously to induce sclerotome. Thus, we have demonstrated that in the context of the embryonic environment, a dorsalizing signal from the dorsal neural tube can compete with the diffusible ventralizing signal from the notochord. In contrast to dorsal neural tube, pieces of ventral neural tube, dorsal ectoderm or neural crest cells, all of which have been postulated to control dermamyotome formation or to induce myogenesis, either fail to do so or provoke only minimal inductive responses in any of our assays. However, complicating the issue, we find consistent with previous studies that following ablation of the entire neural tube, dermamyotome formation still proceeds adjacent to the dorsal ectoderm. Together these results suggest that, although dorsal ectoderm may be less potent than the dorsal neural tube in inducing dermamyotome, it does nonetheless possess some dermamyotomal-inducing activity. Based on our data and that of others, we propose a model for somite dorsoventral patterning in which competing diffusible signals from the dorsal neural tube and from the notochord/floorplate specify dermamyotome and sclerotome, respectively. In our model, the positioning of the dermamyotome dorsally is due to the absence or reduced levels of the notochord-derived ventralizing signals, as well as to the presence of dominant dorsalizing signals. These dorsal signals are possibly localized and amplified by binding to the basal lamina of the ectoderm, where they can signal the underlying somite, and may also be produced by the ectoderm as well.

Development ◽  
2000 ◽  
Vol 127 (22) ◽  
pp. 4845-4854 ◽  
Author(s):  
D. Sela-Donenfeld ◽  
C. Kalcheim

We have previously shown that axial-dependent delamination of specified neural crest cells is triggered by BMP4 and negatively regulated by noggin. Increasing activity of BMP4 towards the rostral part of the axis is achieved by graded expression of noggin in the dorsal neural tube, the latter being high opposite unsegmented mesoderm, and progressively downregulated facing epithelial and dissociating somites, coinciding in time and axial level with initial delamination of neural crest cells (Sela-Donenfeld, D. and Kalcheim, C. (1999) Development 126, 4749–4762). Here we report that this gradient-like expression of noggin in the neuroepithelium is controlled by the paraxial mesoderm. Deletion of epithelial somites prevented normal downregulation of noggin in the neural tube. Furthermore, partial ablation of either the dorsal half or only the dorsomedial portion of epithelial somites was sufficient to maintain high noggin expression. In contrast, deletion of the segmental plate had no effect. These data suggest that the dorsomedial region of developing somites produces an inhibitor of noggin transcription in the dorsal neural tube. Consistent with this notion, grafting dissociating somites in the place of the unsegmented mesoderm precociously downregulated the expression of noggin and triggered premature emigration of neural crest progenitors from the caudal neural tube. Thus, opposite the unsegmented mesoderm, where noggin expression is high in the neural tube, BMP4 is inactive and neural crest cells fail to delaminate. Upon somitogenesis and further dissociation, the dorsomedial portion of the somite inhibits noggin transcription. Progressive loss of noggin activity releases BMP4 from inhibition, resulting in crest cell emigration. We propose that this inhibitory crosstalk between paraxial mesoderm and neural primordium controls the timing of neural crest delamination to match the development of a suitable mesodermal substrate for subsequent crest migration.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3393-3407 ◽  
Author(s):  
G. Couly ◽  
A. Grapin-Botton ◽  
P. Coltey ◽  
N.M. Le Douarin

The mesencephalic and rhombencephalic levels of origin of the hypobranchial skeleton (lower jaw and hyoid bone) within the neural fold have been determined at the 5-somite stage with a resolution corresponding to each single rhombomere, by means of the quail-chick chimera technique. Expression of certain Hox genes (Hoxa-2, Hoxa-3 and Hoxb-4) was recorded in the branchial arches of chick and quail embryos at embryonic days 3 (E3) and E4. This was a prerequisite for studying the regeneration capacities of the neural crest, after the dorsal neural tube was resected at the mesencephalic and rhombencephalic level. We found first that excisions at the 5-somite stage extending from the midmesencephalon down to r8 are followed by the regeneration of neural crest cells able to compensate for the deficiencies so produced. This confirmed the results of previous authors who made similar excisions at comparable (or older) developmental stages. When a bilateral excision was followed by the unilateral homotopic graft of the dorsal neural tube from a quail embryo, thus mimicking the situation created by a unilateral excision, we found that the migration of the grafted unilateral neural crest (quail-labelled) is bilateral and compensates massively for the missing crest derivatives. The capacity of the intermediate and ventral neural tube to yield neural crest cells was tested by removing the chick rhombencephalic neural tube and replacing it either uni- or bilaterally with a ventral tube coming from a stage-matched quail. No neural crest cells exited from the ventral neural tube but no deficiency in neural crest derivatives was recorded. Crest cells were found to regenerate from the ends of the operated region. This was demonstrated by grafting fragments of quail neural fold at the extremities of the excised territory. Quail neural crest cells were seen migrating longitudinally from both the rostral and caudal ends of the operated region and filling the branchial arches located inbetween. Comparison of the behaviour of neural crest cells in this experimental situation with that showed by their normal fate map revealed that crest cells increase their proliferation rate and change their migratory behaviour without modifying their Hox code.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4749-4762 ◽  
Author(s):  
D. Sela-Donenfeld ◽  
C. Kalcheim

For neural crest cells to engage in migration, it is necessary that epithelial premigratory crest cells convert into mesenchyme. The mechanisms that trigger cell delamination from the dorsal neural tube remain poorly understood. We find that, in 15- to 40-somite-stage avian embryos, BMP4 mRNA is homogeneously distributed along the longitudinal extent of the dorsal neural tube, whereas its specific inhibitor noggin exists in a gradient of expression that decreases caudorostrally. This rostralward reduction in signal intensity coincides with the onset of emigration of neural crest cells. Hence, we hypothesized that an interplay between Noggin and BMP4 in the dorsal tube generates graded concentrations of the latter that in turn triggers the delamination of neural crest progenitors. Consistent with this suggestion, disruption of the gradient by grafting Noggin-producing cells dorsal to the neural tube at levels opposite the segmental plate or newly formed somites, inhibited emigration of HNK-1-positive crest cells, which instead accumulated within the dorsal tube. Similar results were obtained with explanted neural tubes from the same somitic levels exposed to Noggin. Exposure to Follistatin, however, had no effect. The Noggin-dependent inhibition was overcome by concomitant treatment with BMP4, which when added alone, also accelerated cell emigration compared to untreated controls. Furthermore, the observed inhibition of neural crest emigration in vivo was preceded by a partial or total reduction in the expression of cadherin-6B and rhoB but not in the expression of slug mRNA or protein. Altogether, these results suggest that a coordinated activity of Noggin and BMP4 in the dorsal neural tube triggers delamination of specified, slug-expressing neural crest cells. Thus, BMPs play multiple and discernible roles at sequential stages of neural crest ontogeny, from specification through delamination and later differentiation of specific neural crest derivatives.


Development ◽  
1998 ◽  
Vol 125 (21) ◽  
pp. 4155-4162 ◽  
Author(s):  
S. Tajbakhsh ◽  
U. Borello ◽  
E. Vivarelli ◽  
R. Kelly ◽  
J. Papkoff ◽  
...  

Activation of myogenesis in newly formed somites is dependent upon signals derived from neighboring tissues, namely axial structures (neural tube and notochord) and dorsal ectoderm. In explants of paraxial mesoderm from mouse embryos, axial structures preferentially activate myogenesis through a Myf5-dependent pathway and dorsal ectoderm preferentially through a MyoD-dependent pathway. Here we report that cells expressing Wnt1 will preferentially activate Myf5 while cells expressing Wnt7a will preferentially activate MyoD. Wnt1 is expressed in the dorsal neural tube and Wnt7a in dorsal ectoderm in the early embryo, therefore both can potentially act in vivo to activate Myf5 and MyoD, respectively. Wnt4, Wnt5a and Wnt6 exert an intermediate effect activating both Myf5 and MyoD equivalently in paraxial mesoderm. Sonic Hedgehog synergises with both Wnt1 and Wnt7a in explants from E8.5 paraxial mesoderm but not in explants from E9.5 embryos. Signaling through different myogenic pathways may explain the rescue of muscle formation in Myf5 null embryos, which do not form an early myotome but later develop both epaxial and hypaxial musculature. Explants of unsegmented paraxial mesoderm contain myogenic precursors capable of expressing MyoD in response to signaling from a neural tube isolated from E10.5 embryos, the developmental stage when MyoD is present throughout the embryo. Myogenic cells cannot activate MyoD in response to signaling from a less mature neural tube. Together these data suggest that different Wnt molecules can activate myogenesis through different pathways such that commitment of myogenic precursors is precisely regulated in space and time to achieve the correct pattern of skeletal muscle development.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1049-1062 ◽  
Author(s):  
T. Scherson ◽  
G. Serbedzija ◽  
S. Fraser ◽  
M. Bronner-Fraser

In avian embryos, cranial neural crest cells emigrate from the dorsal midline of the neural tube shortly after neural tube closure. Previous lineage analyses suggest that the neural crest is not a pre-segregated population of cells within the neural tube; instead, a single progenitor in the dorsal neural tube can contribute to neurons in both the central and the peripheral nervous systems (Bronner-Fraser and Fraser, 1989 Neuron 3, 755–766). To explore the relationship between the ‘premigratory’ neural crest cells and the balance of the cells in the neural tube in the midbrain and hindbrain region, we have challenged the fate of these populations by ablating the neural crest either alone or in combination with the adjoining ventral portions of the neural tube. Focal injections of the vital dye, DiI, into the neural tissue bordering the ablated region demonstrate that cells at the same axial level, in the lateral and ventral neural tube, regulate to reconstitute a population of neural crest cells. These cells emigrate from the neural tube, migrate along normal pathways according to their axial level of origin and appear to give rise to a normal range of derivatives. This regulation following ablation suggests that neural tube cells normally destined to form CNS derivatives can adjust their prospective fates to form PNS and other neural crest derivatives until 4.5-6 hours after the time of normal onset of emigration from the neural tube.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3675-3686 ◽  
Author(s):  
H.M. Stern ◽  
A.M. Brown ◽  
S.D. Hauschka

Previous studies have demonstrated that the neural tube/notochord complex is required for skeletal muscle development within somites. In order to explore the localization of myogenic inducing signals within the neural tube, dorsal or ventral neural tube halves were cultured in contact with single somites or pieces of segmental plate mesoderm. Somites and segmental plates cultured with the dorsal half of the neural tube exhibited 70% and 85% myogenic response rates, as determined by immunostaining for myosin heavy chain. This response was slightly lower than the 100% response to whole neural tube/notochord, but was much greater than the 30% and 10% myogenic response to ventral neural tube with and without notochord. These results demonstrate that the dorsal neural tube emits a potent myogenic inducing signal which accounts for most of the inductive activity of whole neural tube/notochord. However, a role for ventral neural tube/notochord in somite myogenic induction was clearly evident from the larger number of myogenic cells induced when both dorsal neural tube and ventral neural tube/notochord were present. To address the role of a specific dorsal neural tube factor in somite myogenic induction, we tested the ability of Wnt-1-expressing fibroblasts to promote paraxial mesoderm myogenesis in vitro. We found that cells expressing Wnt-1 induced a small number of somite and segmental plate cells to undergo myogenesis. This finding is consistent with the localized dorsal neural tube inductive activity described above, but since the ventral neural tube/notochord also possesses myogenic inductive capacity yet does not express Wnt-1, additional inductive factors are likely involved.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shashank Gandhi ◽  
Erica J Hutchins ◽  
Krystyna Maruszko ◽  
Jong H Park ◽  
Matthew Thomson ◽  
...  

During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling.


Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 505-514 ◽  
Author(s):  
S.J. Conway ◽  
D.J. Henderson ◽  
A.J. Copp

Neural crest cells originating in the occipital region of the avian embryo are known to play a vital role in formation of the septum of the cardiac outflow tract and to contribute cells to the aortic arches, thymus, thyroid and parathyroids. This ‘cardiac’ neural crest sub-population is assumed to exist in mammals, but without direct evidence. In this paper we demonstrate, using RT-PCR and in situ hybridisation, that Pax3 expression can serve as a marker of cardiac neural crest cells in the mouse embryo. Cells of this lineage were traced from the occipital neural tube, via branchial arches 3, 4 and 6, into the aortic sac and aorto-pulmonary outflow tract. Confirmation that these Pax3-positive cells are indeed cardiac neural crest is provided by experiments in which hearts were deprived of a source of colonising neural crest, by organ culture in vitro, with consequent lack of up-regulation of Pax3. Occipital neural crest cell outgrowths in vitro were also shown to express Pax3. Mutation of Pax3, as occurs in the splotch (Sp2H) mouse, results in development of conotruncal heart defects including persistent truncus arteriosus. Homozygotes also exhibit defects of the aortic arches, thymus, thyroid and parathyroids. Pax3-positive neural crest cells were found to emigrate from the occipital neural tube of Sp2H/Sp2H embryos in a relatively normal fashion, but there was a marked deficiency or absence of neural crest cells traversing branchial arches 3, 4 and 6, and entering the cardiac outflow tract. This decreased expression of Pax3 in Sp2H/Sp2H embryos was not due to down-regulation of Pax3 in neural crest cells, as use of independent neural crest markers, Hoxa-3, CrabpI, Prx1, Prx2 and c-met also revealed a deficiency of migrating cardiac neural crest cells in homozygous embryos. This work demonstrates the essential role of the cardiac neural crest in formation of the heart and great vessels in the mouse and, furthermore, shows that Pax3 function is required for the cardiac neural crest to complete its migration to the developing heart.


Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 1-15 ◽  
Author(s):  
G.F. Couly ◽  
P.M. Coltey ◽  
N.M. Le Douarin

The developmental fate of the cephalic paraxial and prechordal mesoderm at the late neurula stage (3-somite) in the avian embryo has been investigated by using the isotopic, isochronic substitution technique between quail and chick embryos. The territories involved in the operation were especially tiny and the size of the transplants was of about 150 by 50 to 60 microns. At that stage, the neural crest cells have not yet started migrating and the fate of mesodermal cells exclusively was under scrutiny. The prechordal mesoderm was found to give rise to the following ocular muscles: musculus rectus ventralis and medialis and musculus oblicus ventralis. The paraxial mesoderm was separated in two longitudinal bands: one median, lying upon the cephalic vesicles (median paraxial mesoderm—MPM); one lateral, lying upon the foregut (lateral paraxial mesoderm—LPM). The former yields the three other ocular muscles, contributes to mesencephalic meninges and has essentially skeletogenic potencies. It contributes to the corpus sphenoid bone, the orbitosphenoid bone and the otic capsules; the rest of the facial skeleton is of neural crest origin. At 3-somite stage, MPM is represented by a few cells only. The LPM is more abundant at that stage and has essentially myogenic potencies with also some contribution to connective tissue. However, most of the connective cells associated with the facial and hypobranchial muscles are of neural crest origin. The more important result of this work was to show that the cephalic mesoderm does not form dermis. This function is taken over by neural crest cells, which form both the skeleton and dermis of the face. If one draws a parallel between the so-called “somitomeres” of the head and the trunk somites, it appears that skeletogenic potencies are reduced in the former, which in contrast have kept their myogenic capacities, whilst the formation of skeleton and dermis has been essentially taken over by the neural crest in the course of evolution of the vertebrate head.


Development ◽  
1983 ◽  
Vol 74 (1) ◽  
pp. 97-118
Author(s):  
C. A. Erickson ◽  
J. A. Weston

The cellular morphology and migratory pathways of the trunk neural crest are described in normal mouse embryos, and in embryos homozygous for Patch in which neural crest derivatives develop abnormally. Trunk neural crest cells initially appear in 8½-day embryos as a unique cell population on the dorsal neural tube surface and are relatively rounded. Once they begin to migrate the cells flatten and orient somewhat tangentially to the neural tube, and advance ventrad between the somites and neural tube. At the onset of migration neural crest cells extend lamellipodia onto the surface of the tube while detaching their trailing processes from the lumenal surface. The basal lamina on the dorsal neural tube is discontinuous when cell migration begins in this region. As development proceeds, the basal lamina gradually becomes continuous from a lateral to dorsal direction and neural crest emigration is progressively confined to the narrowing region of discontinuous basal lamina. Cell separation from the neural tube ceases concomitant with completion of a continuous basement membrane. Preliminary observations of the mutant embryos reveal that abnormal extracellular spaces appear and patterns of crest migration are subsequently altered. We conclude that the extracellular matrix, extracellular spaces and basement membranes may delimit crest migration in the mouse.


Sign in / Sign up

Export Citation Format

Share Document