TheDrosophilaTrithorax protein is a coactivator required to prevent re-establishment of Polycomb silencing

Development ◽  
2002 ◽  
Vol 129 (10) ◽  
pp. 2483-2493 ◽  
Author(s):  
Sylvain Poux ◽  
Béatrice Horard ◽  
Christian J. A. Sigrist ◽  
Vincenzo Pirrotta

Polycomb group (PcG) and Trithorax (TRX) complexes assemble at Polycomb response elements (PREs) and maintain respectively the repressed and active state of homeotic genes. Although PcG and TRX complexes are distinct, their binding to some PRE fragments in vitro depends on GAGA motifs. GAGA factor immunoprecipitates with both complexes. In presence of a PRE, TRX stimulates expression and prevents the return of repression at later stages. When TRX levels are reduced, repression is re-established in inappropriate regions of imaginal discs, suggesting that TRX insufficiency impairs the epigenetic memory of the active state. Targeting a GAL-TRX fusion shows that TRX is a coactivator that stimulates expression of an active gene but cannot initiate expression by itself. Targeting a histone acetylase to a PRE does not affect embryonic silencing but causes a loss of memory in imaginal discs, suggesting that deacetylation is required to establish the memory of the repressed state.

2000 ◽  
Vol 20 (9) ◽  
pp. 3187-3197 ◽  
Author(s):  
Béatrice Horard ◽  
Christophe Tatout ◽  
Sylvain Poux ◽  
Vincenzo Pirrotta

ABSTRACT Polycomb response elements (PREs) are regulatory sites that mediate the silencing of homeotic and other genes. The bxd PRE region from the Drosophila Ultrabithorax gene can be subdivided into subfragments of 100 to 200 bp that retain different degrees of PRE activity in vivo. In vitro, embryonic nuclear extracts form complexes containing Polycomb group (PcG) proteins with these fragments. PcG binding to some fragments is dependent on consensus sequences for the GAGA factor. Other fragments lack GAGA binding sites but can still bind PcG complexes in vitro. We show that the GAGA factor is a component of at least some types of PcG complexes and may participate in the assembly of PcG complexes at PREs.


Development ◽  
2001 ◽  
Vol 128 (1) ◽  
pp. 75-85 ◽  
Author(s):  
S. Poux ◽  
D. McCabe ◽  
V. Pirrotta

Polycomb Group complexes assemble at polycomb response elements (PREs) in vivo and silence genes in the surrounding chromatin. To study the recruitment of silencing complexes, we have targeted various Polycomb Group (PcG) proteins by fusing them to the LexA DNA binding domain. When LexA-PC, -PSC, -PH or -SU(Z)2 are targeted to a reporter gene, they recruit functional PcG-silencing complexes that recapitulate the silencing behavior of a PRE: silencing is sensitive to the state of activity of the target chromatin. When the target is transcriptionally active, silencing is not established but when the target is not active at syncytial blastoderm, it becomes silenced. The repressed state persists through embryonic development but cannot be maintained in larval imaginal discs even when the LexA-PcG fusion is constitutively expressed, suggesting a discontinuity in the mechanism of repression. These proteins also interact with other PC-containing complexes in embryonic nuclear extracts. In contrast LexA-PHO is neither able to silence nor to interact with PC-containing complexes. Analysis of pho mutant embryos and of PRE constructs whose PHO-binding sites are mutated suggests that, while PHO is important for silencing in imaginal discs, it is not necessary for embryonic PcG silencing.


2002 ◽  
Vol 22 (22) ◽  
pp. 8026-8034 ◽  
Author(s):  
Gerhard Rank ◽  
Matthias Prestel ◽  
Renato Paro

ABSTRACT The proteins of the trithorax and Polycomb groups maintain the differential expression pattern of homeotic genes established by the early embryonic patterning system during development. These proteins generate stable and heritable chromatin structures by acting via particular chromosomal memory elements. We established a transgenic assay system showing that the Polycomb group response elements bxd and Mcp confer epigenetic inheritance throughout development. With previously published data for the Fab7 cellular memory module, we confirmed the cellular memory function of Polycomb group response elements. In Drosophila melanogaster, several of these memory elements are located in the large intergenic regulatory regions of the homeotic bithorax complex. Using a transgene assay, we showed that transcription through a memory element correlated with the relief of silencing imposed by the Polycomb group proteins and established an epigenetically heritable active chromatin mode. A memory element remodeled by the process of transcription was able to maintain active expression of a reporter gene throughout development. Thus, transcription appears to reset and change epigenetic marks at chromosomal memory elements regulated by the Polycomb and trithorax proteins. Interestingly, in the bithorax complex of D. melanogaster, the segment-specific expression of noncoding intergenic transcripts during embryogenesis seems to fulfill this switching role for memory elements regulating the homeotic genes.


Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 2163-2173 ◽  
Author(s):  
Ana Busturia ◽  
Alan Lloyd ◽  
Fernando Bejarano ◽  
Michael Zavortink ◽  
Hua Xin ◽  
...  

Silencing of homeotic gene expression requires the function of cis-regulatory elements known as Polycomb Response Elements (PREs). The MCP silencer element of the Drosophila homeotic gene Abdominal-B has been shown to behave as a PRE and to be required for silencing throughout development. Using deletion analysis and reporter gene assays, we defined a 138 bp sequence within the MCP silencer that is sufficient for silencing of a reporter gene in the imaginal discs. Within the MCP138 fragment, there are four binding sites for the Pleiohomeotic protein (PHO) and two binding sites for the GAGA factor (GAF), encoded by the Trithorax-like gene. PHO and the GAF proteins bind to these sites in vitro. Mutational analysis of PHO and GAF binding sequences indicate that these sites are necessary for silencing in vivo. Moreover, silencing by MCP138 depends on the function of the Trithorax-like gene, and on the function of the PcG genes, including pleiohomeotic. Deletion and mutational analyses show that, individually, either PHO or GAF binding sites retain only weak silencing activity. However, when both PHO and GAF binding sites are present, they achieve strong silencing. We present a model in which robust silencing is achieved by sequential and facilitated binding of PHO and GAF.


2001 ◽  
Vol 21 (4) ◽  
pp. 1311-1318 ◽  
Author(s):  
Rakesh K. Mishra ◽  
Jozsef Mihaly ◽  
Stéphane Barges ◽  
Annick Spierer ◽  
François Karch ◽  
...  

ABSTRACT In the work reported here we have undertaken a functional dissection of a Polycomb response element (PRE) from the iab-7 cis-regulatory domain of the Drosophila melanogasterbithorax complex (BX-C). Previous studies mapped the iab-7PRE to an 860-bp fragment located just distal to the Fab-7boundary. Located within this fragment is an ∼230-bp chromatin-specific nuclease-hypersensitive region called HS3. We have shown that HS3 is capable of functioning as a Polycomb-dependent silencer in vivo, inducing pairing-dependent silencing of amini-white reporter. The HS3 sequence contains consensus binding sites for the GAGA factor, a protein implicated in the formation of nucleosome-free regions of chromatin, and Pleiohomeotic (Pho), a Polycomb group protein that is related to the mammalian transcription factor YY1. We show that GAGA and Pho interact with these sequences in vitro and that the consensus binding sites for the two proteins are critical for the silencing activity of theiab-7 PRE in vivo.


Development ◽  
1997 ◽  
Vol 124 (3) ◽  
pp. 721-729 ◽  
Author(s):  
N. Core ◽  
S. Bel ◽  
S.J. Gaunt ◽  
M. Aurrand-Lions ◽  
J. Pearce ◽  
...  

In Drosophila, the trithorax-group and the Polycomb-group genes are necessary to maintain the expression of the homeobox genes in the appropriate segments. Loss-of-function mutations in those groups of genes lead to misexpression of the homeotic genes resulting in segmental homeotic transformations. Recently, mouse homologues of the Polycomb-group genes were identified including M33, the murine counterpart of Polycomb. In this report, M33 was targeted in mice by homologous recombination in embryonic stem (ES) cells to assess its function during development. Homozygous M33 (−/−) mice show greatly retarded growth, homeotic transformations of the axial skeleton, sternal and limb malformations and a failure to expand in vitro of several cell types including lymphocytes and fibroblasts. In addition, M33 null mutant mice show an aggravation of the skeletal malformations when treated to RA at embryonic day 7.5, leading to the hypothesis that, during development, the M33 gene might play a role in defining access to retinoic acid response elements localised in the regulatory regions of several Hox genes.


2002 ◽  
Vol 22 (17) ◽  
pp. 6261-6271 ◽  
Author(s):  
Der-Hwa Huang ◽  
Yuh-Long Chang ◽  
Chih-Chao Yang ◽  
I-Ching Pan ◽  
Balas King

ABSTRACT The Polycomb (Pc) group (Pc-G) of repressors is essential for transcriptional silencing of homeotic genes that determine the axial development of metazoan animals. It is generally believed that the multimeric complexes formed by these proteins nucleate certain chromatin structures to silence promoter activity upon binding to Pc-G response elements (PRE). Little is known, however, about the molecular mechanism involved in sequence-specific binding of these complexes. Here, we show that an immunoaffinity-purified Pc protein complex contains a DNA binding activity specific to the (GA) n motif in a PRE from the bithoraxoid region. We found that this activity can be attributed primarily to the large protein isoform encoded by pipsqueak (psq) instead of to the well-characterized GAGA factor. The functional relevance of psq to the silencing mechanism is strongly supported by its synergistic interactions with a subset of Pc-G that cause misexpression of homeotic genes.


Genetics ◽  
1997 ◽  
Vol 146 (4) ◽  
pp. 1365-1380 ◽  
Author(s):  
Kirsten Hagstrom ◽  
Martin Muller ◽  
Paul Schedl

The homeotic genes of the Drosophila bithorax complex are controlled by a large cis-regulatory region that ensures their segmentally restricted pattern of expression. A deletion that removes the Frontabdominal-7 cis-regulatory region (Fab-71) dominantly transforms parasegment 11 into parasegment 12. Previous studies suggested that removal of a domain boundary element on the proximal side of Fab-71 is responsible for this gain-of-function phenotype. In this article we demonstrate that the Fab-71 deletion also removes a silencer element, the iab-7 PRE, which maps to a different DNA segment and plays a different role in regulating parasegment-specific expression patterns of the Abd-B gene. The iab-7 PRE mediates pairing-sensitive silencing of mini-white, and can maintain the segmentally restricted expression pattern of a BXD, Ubx/lacZ reporter transgene. Both silencing activities depend upon Polycomb Group proteins. Pairing-sensitive silencing is relieved by removing the transvection protein Zeste, but is enhanced in a novel pairing-independent manner by the zeste1 allele. The iab-7 PRE silencer is contained within a 0.8-kb fragment that spans a nuclease hypersensitive site, and silencing appears to depend on the chromatin remodeling protein, the GAGA factor.


Development ◽  
1998 ◽  
Vol 125 (17) ◽  
pp. 3483-3496 ◽  
Author(s):  
F. Tie ◽  
T. Furuyama ◽  
P.J. Harte

The Polycomb Group gene esc encodes an evolutionarily conserved protein required for transcriptional silencing of the homeotic genes. Unlike other Polycomb Group genes, esc is expressed and apparently required only during early embryogenesis, suggesting it is required for the initial establishment of silencing but not for its subsequent maintenance. We present evidence that the ESC protein interacts directly with E(Z), another Polycomb Group protein required for silencing of the homeotic genes. We show that the most highly conserved region of ESC, containing seven WD motifs that are predicted to fold into a beta-propeller structure, mediate its binding to a conserved N-terminal region of E(Z). Mutations in the WD region that perturb ESC silencing function in vivo also perturb binding to E(Z) in vitro. The entire WD region forms a trypsin-resistant structure, like known beta -propeller domains, and mutations that would affect the predicted ESC beta-propeller perturb its trypsin-resistance, while a putative structure-conserving mutation does not. We show by co-immunoprecipitation that ESC and E(Z) are directly associated in vivo and that they also co-localize at many chromosomal binding sites. Since E(Z) is required for binding of other Polycomb Group proteins to chromosomes, these results suggest that formation of an E(Z):ESC complex at Polycomb Response Elements may be an essential prerequisite for the establishment of silencing.


Sign in / Sign up

Export Citation Format

Share Document