scholarly journals In vitro ovarian culture system provides insight into the mechanism underlying follicle assembly in vivo

Development ◽  
2021 ◽  
pp. dev.197459
Author(s):  
Ren Tanimoto ◽  
Kiyono Sekii ◽  
Kanako Morohaku ◽  
Jianzhen Li ◽  
David Pepin ◽  
...  

In mammals, primordial follicles assembled in fetuses or during infancy constitute the oocyte resources for life. Exposure to 17beta-estradiol and phytogenic or endocrine-disrupting chemicals during pregnancy and/or the perinatal period leads to the failure of normal follicle formation. However, the mechanisms underlying estrogen-mediated abnormal follicle formation and physiological follicle formation in the presence of endogenous natural estrogen are not well-understood. Here, we reveal that estrogen receptor 1, activated by estrogen, binds to the 5′ region of the anti-Mullerian hormone (Amh) gene and upregulates its transcription before follicle formation in cultured mouse fetal ovaries. Ectopic expression of AMH protein was observed in pregranulosa cells of these explants. Furthermore, AMH addition to the culture medium inhibited normal follicle formation. Conversely, alpha-fetoprotein (AFP) produced in fetal liver reportedly blocks estrogen action, although its role in follicle formation is unclear. We further demonstrated that AFP addition to the medium inhibited ectopic AMH expression via estrogen, leading to successful follicle formation in vitro. Collectively, our in vitro experiments suggest that upon estrogen exposure, the integrity of follicle assembly in vivo is ensured by AFP.

Author(s):  
Keerthi Priya ◽  
Manjunath Setty ◽  
Uddagiri Venkanna Babu ◽  
Karkala Sreedhara Ranganath Pai

AbstractThe pool of primordial follicles formed in the ovaries during early development determines the span and quality of fertility in the reproductive life of a woman. As exposure to occupational and environmental toxicants (ETs) has become inevitable, consequences on female fertility need to be established. This review focuses on the ETs, especially well-studied prototypes of the classes endocrine disrupting chemicals (EDCs), heavy metals, agrochemicals, cigarette smoke, certain chemicals used in plastic, cosmetic and sanitary product industries etc that adversely affect the female fertility. Many in vitro, in vivo and epidemiological studies have indicated that these ETs have the potential to affect folliculogenesis and cause reduced fertility in women. Here, we emphasize on four main conditions: polycystic ovary syndrome, primary ovarian insufficiency, multioocytic follicles and meiotic defects including aneuploidies which can be precipitated by ETs. These are considered main causes for reduced female fertility by directly altering the follicular recruitment, development and oocytic meiosis. Although substantial experimental evidence is drawn with respect to the detrimental effects, it is clear that establishing the role of one ET as a risk factor in a single condition is difficult as multiple conditions have common risk factors. Therefore, it is important to consider this as a matter of public and wildlife health.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Gwenneg Kerdivel ◽  
Denis Habauzit ◽  
Farzad Pakdel

In all vertebrate species, estrogens play a crucial role in the development, growth, and function of reproductive and nonreproductive tissues. A large number of natural or synthetic chemicals present in the environment and diet can interfere with estrogen signaling; these chemicals are called endocrine disrupting chemicals (EDCs) or xenoestrogens. Some of these compounds have been shown to induce adverse effects on human and animal health, and some compounds are suspected to contribute to diverse disease development. Because xenoestrogens have varying sources and structures and could act in additive or synergistic effects when combined, they have multiple mechanisms of action. Consequently, an important panel ofin vivoandin vitrobioassays and chemical analytical tools was used to screen, evaluate, and characterize the potential impacts of these compounds on humans and animals. In this paper, we discuss different molecular actions of some of the major xenoestrogens found in food or the environment, and we summarize the current models used to evaluate environmental estrogens.


2003 ◽  
Vol 3 (3) ◽  
pp. 155-160 ◽  
Author(s):  
L.D. Nghiem ◽  
A.I. Schäfer ◽  
T.D. Waite

Recent detections of endocrine-disrupting chemicals (EDCs) in effluent are of great concern to sections of the community associated with the issue of water recycling. In vitro and in vivo studies by many researchers have confirmed the impacts of EDCs on trout at the common concentration encountered in sewage effluent. Amongst many types of EDCs the impacts of steroid estrogens such as estrone, estradiol (natural hormones) and ethinylestradiol (a synthetic hormone) are prominent as they have far higher endocrine-disrupting potency than other synthetic EDCs. Given the continuous developments in membrane technology, tertiary treatment using membrane processes has been identified as a promising technology to provide a safeguard to water recycling practice and to protect the environment. This paper investigates retention and adsorptive behavior of the natural hormones estrone and estradiol by two commercial low-pressure nanofiltration membranes TFC-SR2 and TFC-S, using dead end stirred cell systems. The removal phenomena of estradiol are similar to that of estrone. pH has been found to significantly influence the adsorption of estrone and estradiol by the membranes, presumably due to hydrogen bonding. This adsorption is critical in the risk of possible release of such hormones to the product waters. Total adsorbed amounts were calculated for standard membrane elements and are indeed important.


2002 ◽  
Vol 227 (9) ◽  
pp. 709-723 ◽  
Author(s):  
William J. Hendry ◽  
Daniel M. Sheehan ◽  
Shafiq A. Khan ◽  
Jeffrey V. May

At the biomedical, regulatory, and public level, considerable concern surrounds the concept that inappropriate exposure to endocrine-disrupting chemicals, especially during the prenatal and/or neonatal period, may disrupt normal reproductive tract development and adult function. The intent of this review was to 1. Describe some unique advantages of the hamster for perinatal endocrine disruptor (ED) studies, 2. Summarize the morphological and molecular consequences of exposure to the established perinatal ED, diethylstilbestrol, in the female and male hamster, 3. Present some new, histomorphological insight into the process of neonatal diethylstilbestrol-induced disruption in the hamster uterus, and 4. Introduce recent efforts and future plans to evaluate the potency and mechanism of action of other putative EDs in the hamster experimental system. Taken together, the findings indicate that the hamster represents a unique and sensitive in vivo system to probe the phenomenon of endocrine disruption. The spectrum of candidate endpoints includes developmental toxicity, neoplasia, and more subtle endpoints of reproductive dysfunction.


2005 ◽  
Vol 16 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Kiyoshi Shimada ◽  
Yonju Ha ◽  
Akira Tsukada ◽  
Noboru Saito ◽  
Shinobu Maekawa ◽  
...  

Author(s):  
Ren Tanimoto ◽  
Kyota Yoshida ◽  
Shinya Ikeda ◽  
Yayoi Obata

AbstractIn vitro systems capable of reconstituting the process of mouse oogenesis are now being established to help develop further understanding of the mechanisms underlying oocyte/follicle development and differentiation. These systems could also help increase the production of useful livestock or genetically modified animals, and aid in identifying the causes of infertility in humans. Recently, we revealed, using an in vitro system for recapitulating oogenesis, that the activation of the estrogen signaling pathway induces abnormal follicle formation, that blocking estrogen-induced expression of anti-Müllerian hormone is crucial for normal follicle formation, and that the production of α-fetoprotein in fetal liver tissue is involved in normal in vivo follicle formation. In mouse fetuses, follicle formation is not carried out by factors within the ovaries but is instead orchestrated by distal endocrine factors. This review outlines findings from genetics, endocrinology, and in vitro studies regarding the factors that can affect the formation of primordial follicles in mammals.


2010 ◽  
Vol 30 (2) ◽  
pp. 413-426 ◽  
Author(s):  
Kresten Ole Kusk ◽  
Tanja Krüger ◽  
Manhai Long ◽  
Camilla Taxvig ◽  
Anne E. Lykkesfeldt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document