An ultrastructural study of germ plasm in spermatogenesis of Xenopus lœvis

Development ◽  
1974 ◽  
Vol 32 (3) ◽  
pp. 573-592
Author(s):  
J. B. Kerr ◽  
K. E. Dixon

Spermatogonia and primary diplotene and zygotene spermatocytes contain an electrondense, finely granular substance which is usually closely associated with mitochondria; small patches of this substance also occur close to the nuclear membrane, often in the nuclear pores, and within the nucleus of primary spermatogonia. The fine structure of this substance is very similar to the fine structure of germ plasm in other stages of development, and since an ontogenetic continuity with germ plasm can be demonstrated, it was concluded that this substance is also germ plasm. The substance disappears about pachytene, earlier than in oogenesis where it persists until mid-diplotene, a difference which may be due to the fact that the oocyte stores large quantities of germ plasm in its cortex for the next generation of primordial germ cells. If the presence of the substance in the nuclear pores and within the nucleus is an indicator of synthesis of germ plasm, then synthesis stops in the secondary spermatogonium, which correlates with the subsequent absence of germ plasm from the pachytene spermatocyte stages. It is suggested that the function of the germ plasm in specifying germ line cells is carried out between the gastrula stage and the beginning of meiosis. The three events which take place during this period are (i) the migration of the presumptive primordial germ cells from the endoderm to the genital ridges, (ii) mitosis of the primordial germ cells and subsequently of the oogonia and spermatogonia in the developing gonads and (iii) preparations for meiosis. It is suggested that the mechanism of action of the germ plasm may be in the control of one or more of these processes. Other types of granular cytoplasmic deposits are also described, and their possible relationship to germ plasm discussed.

Development ◽  
1985 ◽  
Vol 90 (1) ◽  
pp. 79-99
Author(s):  
J. H. Cleine ◽  
K. E. Dixon

Eggs of X. laevis were rotated (sperm entrance point downwards) either through 90° (1×90 embryos) or 180° in two 90° steps (2×90 embryos) at approximately 25–30 min postfertilization after cooling to 13°C. The embryos were kept in their off-axis orientation and cooled until the early gastrula stage. Rotation resulted in relocation of egg constituents with slight changes in the distribution of outer cortical and subcortical components and major changes in inner constituents where the heavy yolk and cytoplasm appeared to reorient as a single coherent unit to maintain their relative positions with respect to gravity. Development of rotated embryos was such that regions of the egg which normally give rise to posterior structures instead developed into anterior structures and vice versa. Germ plasm was displaced in the vegetal-dorsal-animal direction (the direction of rotation) and was segregated into dorsal micromeres and intermediate zone cells in 2×90 embryos and dorsal macromeres and intermediate zone cells in 1×90 embryos. In consequence, at the gastrula stage, cells containing germ plasm were situated closer to the dorsal lip of the blastopore after rotation — in 2×90 gastrulas around and generally above the dorsal lip. Hence, in rotated embryos, the cells containing germ plasm were invaginated earlier during gastrulation and therefore were carried further anteriorly in the endoderm to a mean position anterior to the midpoint of the endoderm. The number of cells containing germ plasm in rotated embryos was not significantly different from that in controls at all stages up to and including tail bud (stage 25). However at stages 46, 48 and 49 the number of primordial germ cells was reduced in 1×90 embryos in one experiment of three and in 2×90 embryos in all experiments. We tested the hypothesis that the decreased number of primordial germ cells in the genital ridges was due to the inability of cells to migrate to the genital ridges from their ectopic location in the endoderm. When anterior endoderm was grafted into posterior endodermal regions the number of primordial germ cells increased slightly or not at all suggesting that the anterior displacement of the cells containing germ plasm was not the only factor responsible for the decreased number of primordial germ cells in rotated embryos. Other possible explanations are discussed.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 527-535
Author(s):  
K. Ikenishi ◽  
Y. Tsuzaki

To determine whether the location of ‘germ plasm’-bearing cells [presumptive primordial germ cells (pPGCs)] is crucial for their differentiation into PGCs in Xenopus, [3H]thymidine-labelled pPGCs were implanted into the anterior or posterior halves of the endoderm in unlabelled host neurulae. Labelled PGCs in the genital ridges of experimental tadpoles were investigated by autoradiography. When the labelled pPGCs were implanted into posterior halves of the endoderm where host pPGCs are situated, 65 and 77% of the experimental tadpoles (designated as p-tadpoles) had the labelled PGCs in series I and II, respectively. When implanted into the anterior halves, 20 and 27% of the experimental tadpoles (a- tadpoles) had the labelled PGCs in series I and II, respectively. In p-tadpoles, the average numbers of labelled PGCs per tadpole were 8á7 in series I and 10 in series II, whereas they were 2á0 in a-tadpoles of both series. Both the proportion and the average number in p-tadpoles of both series were significantly different from those in a-tadpoles. In both series, labelled PGCs in p-tadpoles were found to be distributed throughout the genital ridges while those in a-tadpoles were localized only in the anterior part of the ridges. These facts indicate that the location of pPGCs in the endoderm affects their successful migration into the genital ridges, and that not only the presence of the germ plasm but also the proper location in endoderm are prerequisites to PGC differentiation of the germ line cells.


Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 251-258
Author(s):  
Andy McMahon ◽  
Mandy Fosten ◽  
Marilyn Monk

The pattern of expression of the two X chromosomes was investigated in pre-meiotic germ cells from 12½-day-old female embryos heterozygous for the variant electrophoretic forms of the X-linked enzyme phosphoglycerate kinase (PGK-1). If such germ cells carry the preferentially active Searle's translocated X chromosome (Lyon, Searle, Ford & Ohno, 1964), then only the Pgk-1 allele on this chromosome is expressed. This confirms Johnston's evidence (1979,1981) that Pgk-1 expression reflects a single active X chromosome at this time. Extracts of 12½-day germ cells from heterozygous females carrying two normal X chromosomes show both the A and the B forms of PGK; since only one X chromosome in each cell is active, different alleles must be expressed in different cells, suggesting that X-chromosome inactivation is normally random in the germ line. This result makes it unlikely that germ cells are derived from the yolk-sac endoderm where the paternally derived X chromosome is preferentially inactivated. In their pattern of X-chromosome inactivation, germ cells evidently resemble other tissues derived from the epiblast.


Author(s):  
Ying Chen ◽  
Xiang Fang ◽  
Xiao-Qing Tian ◽  
Zheng Cui ◽  
Hai-Yang Feng ◽  
...  

Development ◽  
1990 ◽  
Vol 109 (4) ◽  
pp. 911-923 ◽  
Author(s):  
A. Orr-Urtreger ◽  
A. Avivi ◽  
Y. Zimmer ◽  
D. Givol ◽  
Y. Yarden ◽  
...  

Developmental expression of the c-kit proto-oncogene, a receptor tyrosine kinase encoded by the W locus, was investigated by in situ hybridization in normal mouse embryos. Early after implantation transcripts were detectable only in the maternal placenta (6 1/2-7 1/2 days p.c.). Subsequently (8 1/2 days p.c.) numerous ectodermal (neural tube, sensory placodes) and endodermal (embryonic gut) derivatives expressed c-kit. Later transcripts were detected also in the blood islands of the yolk sac and in the embryonic liver, the main sites of embryonic hemopoiesis. Around midgestation, transcripts accumulated in the branchial pouches and also in primordial germ cells of the genital ridges. This complex pattern of expression remained characteristic also later in gestation, when c-kit was expressed in highly differentiated structures of the craniofacial area, in presumptive melanoblasts and in the CNS. In the adult ovary, maternal c-kit transcripts were detected. They were present in the oocytes of both immature and mature ovarian follicles, but not in the male germ line, where c-kit expression may be down regulated. Thus, c-kit activity is complex and appears in multiple tissues including those that also display defects in mutations at the W locus where c-kit is encoded. Correlation between W phenotypes and c-kit expression, as well as the regulation of the complex and multiple expression of polypeptide growth factors and receptors, is discussed.


Development ◽  
1971 ◽  
Vol 26 (2) ◽  
pp. 195-217
Author(s):  
Kawakib A. K. Al-Mukhtar ◽  
Andrew C. Webb

Electron-microscope observations on the differentiation of germ cells in Xenopus laevis have revealed that the Balbiani body, cytoplasmic nucleolus-like bodies and groups of mitochondria associated with granular material previously reported only in older amphibian oocytes, are also present in the primordial germ cells, oogonia and early meiotic (pre-diplotene) oocytes of this species. Although there is considerable morphological reorganization of the gonad as a whole at the time of sex determination, little visible change in the ultrastructure of the primordial germ cells appears to take place during their transition to oogonia. Both primordial germ cells and oogonia have highly lobed nuclei and their cytoplasm contains a conspicuous, juxtanuclear organelle aggregate (consisting for the most part of mitochondria), which is considered to represent the precursor of the Balbiani body. In marked contrast, the transition from oogonium to oocyte in Xenopus is characterized by a distinctive change in nuclear shape (from lobed to round) associated with the onset of meiosis. During leptotene the oocyte chromatin becomes visibly organized into electron-dense axial elements (representing the single unpaired chromosomes) which are surrounded by a fibrillar network. Towards the end of leptotene, these axial elements become attached to the inner surface of the nuclear membrane in a localized region adjacent to the juxtanuclear mitochondrial aggregate. Zygotene is marked by the initiation of axial element pairing over short regions, resulting in the typical synaptonemal complex configuration of paired homologous chromosomes. The polarization of these tripartite ribbons within the nucleus becomes more pronounced in late zygotene, producing the familiar Bouquet arrangement. The synaptonemal complexes are more extensive as synapsis reaches a climax during pachytene, whereas the polarization is to some extent lost. The fine structure of synaptonemal complexes in the Xenopus oocyte is essentially the same as that described in numerous other plant and animal meiocytes. It is not until the beginning of the extended diplotene phase that any appreciable increase in cell diameter takes place. During early diplotene (oocyte diameter approximately 50 µm), the compact Balbiani body characteristic of the pre-vitellogenic anuran oocyte is formed by condensation of the juxtanuclear mitochondrial aggregate. Electron-dense, granular material appears to pass between nucleus and cytoplasm via nuclear pores in all stages of Xenopus germ cell differentiation studied. There is a distinct similarity in electron density and granular content between this ‘nuage material’ associated with the nuclear pores and the cytoplasmic aggregates of granular material in association with mitochondria or in the form of nucleolus-like bodies.


Development ◽  
1977 ◽  
Vol 39 (1) ◽  
pp. 221-233
Author(s):  
Masami Wakahara

Larvae of Rana chensinensis developed from fertilized eggs which had been subjected to ultraviolet (u.v.) irradiation on their vegetal hemisphere at a dose of 20000 ergs/mm2 within 60 min of fertilization contained no primordial germ cells (PGCs) when examined histologically at the stage when the operculum was complete (8 days after fertilization at 18 °C, stage 25 according to Shumway, 1940). The morphogenetic ability of vegetal pole cytoplasm from non-irradiated eggs to establish the PGCs was tested by injecting some fractions of this cytoplasm into the vegetal hemisphere of u.v.-irradiated eggs. Crude homogenate of the vegetal pole cytoplasm without large yolk platelets was able to restore the PGCs when injected into u.v.-irradiated eggs, but a similar fraction from animal half cytoplasm had no ability to form PGCs. The ‘PGC-forming activity’ demonstrated in the crude homogenate of the vegetal pole cytoplasm was not abolished by dialysis, lyophilization and heating to 90 °C for 10 min. When the homogenate was fractionated by differential centrifugation in 0·25 M sucrose, the ‘PGC-forming activity’ was recovered mainly in the precipitate of 15000g for 30 min. The precipitate of 7000 g for 10 min had also a little ‘activity’. The possibility was discussed that the ‘PGC-forming activity’ demonstrated in the vegetal pole cytoplasm was associated with the germinal granules in the germ plasm rather than the mitochondria.


Sign in / Sign up

Export Citation Format

Share Document