vegetal pole
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 1)

Aquaculture ◽  
2022 ◽  
pp. 737899
Author(s):  
Mujahid Ali Shah ◽  
Effrosyni Fatira ◽  
Viktoriia Iegorova ◽  
Xuan Xie ◽  
David Gela ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Eduardo Pulgar ◽  
Cornelia Schwayer ◽  
Néstor Guerrero ◽  
Loreto López ◽  
Susana Márquez ◽  
...  

The developmental strategies used by progenitor cells to allow a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here, we uncovered a mechanism of progenitor cell allocation that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the superficial epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-lasting apical contacts that enable the epithelial layer to pull a subset of progenitors on their way to the vegetal pole. The remaining delaminated cells follow the movement of apically attached progenitors by a protrusion-dependent cell-cell contact mechanism, avoiding sequestration by the adjacent endoderm, ensuring their collective fate and allocation at the site of differentiation. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development.


Development ◽  
2021 ◽  
Vol 148 (13) ◽  
Author(s):  
Julian O. Kimura ◽  
Lorenzo Ricci ◽  
Mansi Srivastava

ABSTRACT Acoels are marine worms that belong to the phylum Xenacoelomorpha, a deep-diverging bilaterian lineage. This makes acoels an attractive system for studying the evolution of major bilaterian traits. Thus far, acoel development has not been described in detail at the morphological and transcriptomic levels in a species in which functional genetic studies are possible. We present a set of developmental landmarks for embryogenesis in the highly regenerative acoel Hofstenia miamia. We generated a developmental staging atlas from zygote to hatched worm based on gross morphology, with accompanying bulk transcriptome data. Hofstenia embryos undergo a stereotyped cleavage program known as duet cleavage, which results in two large vegetal pole ‘macromeres’ and numerous small animal pole ‘micromeres’. These macromeres become internalized as micromere progeny proliferate and move vegetally. We also noted a second, previously undescribed, cell-internalization event at the animal pole, following which we detected major body axes and tissues corresponding to all three germ layers. Our work on Hofstenia embryos provides a resource for mechanistic investigations of acoel development, which will yield insights into the evolution of bilaterian development and regeneration.


2021 ◽  
Author(s):  
Sreelaja Nair ◽  
Elaine L Welch ◽  
Cara E Moravec ◽  
Ryan L Trevena ◽  
Francisco Pelegri

We show that the zebrafish maternal-effect mutation too much information (tmi) corresponds to zebrafish prc1-like (prc1l), which encodes a member of the MAP65/Ase1/PRC1family of microtubule-associated proteins. Embryos from tmi/prc1l homozygous mutant mothers display cytokinesis defects in meiotic and mitotic divisions in the early embryo, indicating that tmi/prc1l has a role in midbody formation during cell division at the egg-to-embryo transition. Unexpectedly, maternal tmi/prc1l function is also essential for the reorganization of vegetal pole microtubules required for embryonic axis induction. While Prc1 is widely regarded to crosslink microtubules in an antiparallel conformation, our studies provide evidence for an additional function of Prc1 in the bundling of parallel microtubules in the vegetal cortex of the early embryo during cortical rotation and prior to mitotic cycling. These findings highlight common yet distinct aspects of microtubule reorganization that occur during the egg-to-embryo transition, driven by maternal product for the midbody component Prc1l and required for embryonic cell division and pattern formation.


2021 ◽  
Author(s):  
Zak Swartz ◽  
Tzer Han Tan ◽  
Margherita Perillo ◽  
Nikta Fakhri ◽  
Gary M. Wessel ◽  
...  

The organismal body axes that are formed during embryogenesis are intimately linked to intrinsic asymmetries established at the cellular scale in oocytes. Here, we report an axis-defining event in meiotic oocytes of the sea star Patiria miniata. Dishevelled is a cytoplasmic Wnt pathway effector required for axis development in diverse species, but the mechanisms governing its function and distribution remain poorly defined. Using time-lapse imaging, we find that Dishevelled localizes uniformly to puncta throughout the cell cortex in Prophase I-arrested oocytes, but becomes enriched at the vegetal pole following meiotic resumption through a dissolution-condensation mechanism. This process is driven by an initial disassembly phase of Dvl puncta, followed by selective reformation of Dvl assemblies at the vegetal pole. Rather than being driven by Wnt signaling, this localization behavior is coupled to meiotic cell cycle progression and influenced by Lamp1+ endosome association and Frizzled receptors pre-localized within the oocyte cortex. Our results reveal a cell cycle-linked mechanism by which maternal cellular polarity is transduced to the embryo through spatially-regulated Dishevelled dynamics.


2021 ◽  
Author(s):  
Eduardo Pulgar ◽  
Cornelia Schwayer ◽  
Néstor Guerrero ◽  
Loreto López ◽  
Susana Márquez ◽  
...  

AbstractThe developmental strategies used by progenitor cells to endure a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here we uncovered a progenitor cell allocation mechanism that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the surface epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-term apical contacts that enable the epithelial layer to pull a subset of progenitors along their way towards the vegetal pole. The remaining delaminated progenitors follow apically-attached progenitors’ movement by a co-attraction mechanism, avoiding sequestration by the adjacent endoderm, ensuring their fate and collective allocation at the differentiation site. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development.Impact StatementIncomplete delamination serves as a cellular platform for coordinated tissue movements during development, guiding newly formed progenitor cell groups to the differentiation site.


2021 ◽  
Author(s):  
Julian O. Kimura ◽  
Lorenzo Ricci ◽  
Mansi Srivastava

AbstractAcoels are marine worms that belong to the phylum Xenacoelomorpha. The phylogenetic placement of this group as a deep-diverging lineage makes acoel embryos an attractive system to study the evolution of major bilaterian traits. Thus far, acoel development has not been described in detail at the morphological and transcriptomic levels in a species where functional genetic studies are possible. Here, we present a set of developmental landmarks for embryogenesis in the highly regenerative acoel Hofstenia miamia. We generated a developmental staging atlas from zygote to hatched worm based on gross morphology, with accompanying bulk transcriptome data for each of the stages. Hofstenia embryos undergo a stereotyped cleavage program known as duet cleavage, which results in two large ‘macromeres’ at the vegetal pole and numerous small ‘micromeres’ at the animal pole. The macromeres become internalized as micromere progeny proliferate and move vegetally, enveloping the larger blastomeres. We also noted a second, previously undescribed cell internalization event at the animal pole, following which we detected tissues corresponding to all three germ layers. Our work on Hofstenia embryos provides a resource for future investigations of acoel development, which will yield insights into the evolution of development and regeneration.Summary StatementComprehensive characterization of embryonic development in the acoel worm Hofstenia miamia with accompanying transcriptome data.


2020 ◽  
pp. mbc.E20-01-0083
Author(s):  
Hirokazu Ishii ◽  
Tomomi Tani

Spatial reorganization of cytoplasm in zygotic cells is critically important for establishing the body plans of many animal species. In ascidian zygotes, maternal determinants (mRNAs) are first transported to the vegetal pole a few minutes after the fertilization, and then to the future posterior side of the zygotes in later phase of the cytoplasmic reorganization, before the first cell division. Here, by using a novel fluorescence polarization microscope that reports the position and the orientation of fluorescently labeled proteins in living cells, we mapped the local alignments and the time-dependent changes of cortical actin networks in Ciona eggs. The initial cytoplasmic reorganization started with the contraction of vegetal hemisphere approximately 20 s after the fertilization induced [Ca2+] increase. Timing of the vegetal contraction was consistent with the emergence of highly aligned actin filaments at the cell cortex of vegetal hemisphere which ran perpendicular to the animal-vegetal axis. We propose that the cytoplasmic reorganization is initiated by the local contraction of laterally aligned cortical actomyosin in the vegetal hemisphere, which in turn generates the directional movement of cytoplasm within whole egg. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


2020 ◽  
Author(s):  
Karoline Holler ◽  
Anika Neuschulz ◽  
Philipp Drewe-Boß ◽  
Janita Mintcheva ◽  
Bastiaan Spanjaard ◽  
...  

SummaryEarly stages of embryogenesis depend heavily on subcellular localization and transport of maternally deposited mRNA. However, systematic analysis of these processes is currently hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combined spatially-resolved transcriptomics and single-cell RNA labeling to study the spatio-temporal dynamics of the transcriptome during the first few hours of zebrafish development. We measured spatial localization of mRNA molecules with sub-single-cell resolution at the one-cell stage, which allowed us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we established a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enabled us to follow the fate of individual maternal transcripts until gastrulation. This approach revealed that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquired spatial transcriptomes of two xenopus species, and we compared evolutionary conservation of localized genes as well as enriched sequence motifs. In summary, we established sub-single-cell spatial transcriptomics and single-cell RNA labeling to reveal principles of mRNA localization in early vertebrate development.


2020 ◽  
Author(s):  
Chao Yang ◽  
Gena M. Wilson ◽  
Matthew M. Champion ◽  
Paul W. Huber

AbstractFragmentation of the Balbiani body in Xenopus oocytes engenders a region extending from the germinal vesicle (GV) towards the vegetal pole that is enriched in mitochondria. This area is later transversed by RNA that is being localized to the vegetal cortex. Inhibition of mitochondrial ATP synthesis prevents the perinuclear formation of these RNA transport granules that can be reversed by the nonhydrolyzable ATP analog, adenosine 5’-(βγ-imido) triphosphate. The protein composition and sensitivity of the transport granules to hexanediol indicate that they are liquid phase condensates. Mitochondria in the remnants of the Balbiani body produce a region of elevated ATP that appears to act as a hydrotrope to support the perinuclear phase transition leading to granule formation.SummaryMitochondria in the remnants of the Balbiani body produce elevated levels of ATP required for the formation of liquid phase condensates containing RNA transport granules.


Sign in / Sign up

Export Citation Format

Share Document