Further analysis of the effect of ultra-violet irradiation on the formation of the germ line in Xenopus laevis

Development ◽  
1983 ◽  
Vol 76 (1) ◽  
pp. 67-81
Author(s):  
V. Thomas ◽  
J. Heasman ◽  
C. Ford ◽  
D. Nagajski ◽  
C. C. Wylie

Ultra-violet (u.v.) irradiation of the vegetal pole of newly fertilized eggs has three documented effects: reduction of primordial germ cells (PGCs), cytological damage to the vegetal hemisphere and disruption of the normal mechanism by which the vegetal yolk mass induces the formation of the dorsal axis of the embryo. In this study, we find that 90° rotation of the egg for various periods after irradiation rescues the dorsal axial structures but does not restore the number of PGCs found in the dorsal mesentery of the gut; neither is there any correlation between reduced numbers of PGCs and disruption of cleavage at the vegetal pole. We therefore conclude that the effect on the germ line is separate from the other two phenomena. Secondly, 90° rotation of non-irradiated eggs was found to significantly reduce germ cell numbers migrating in the dorsal mesentery of the gut.

Development ◽  
1982 ◽  
Vol 72 (1) ◽  
pp. 183-195
Author(s):  
Jerzy Klag

In the early embryo of Tetrodontophora bielanensis (up to the stage of 500 blastomeres) nuage granules occur in two different locations: (1) in areas where the invaginating cleavage furrows have pushed fragments of the oosome into the yolk mass, and (2) in the oosome proper. In the first areas the granules are few in number and certain cells that have enclosed them in their cytoplasm eventually degenerate. The remaining cells arising in these areas are devoid of any nuage granules and differentiate into yolk cells. A different situation is observed in the other areas, where certain cells resulting from tangential divisions of the superficial blastomeres contain many nuage granules and represent primordial germ cells (PGCs). The incipient PGCs differ from the other cells of the embryo in possessing nuage granules associated with mitochondria and in lacking any annulate lamellae.


Development ◽  
1961 ◽  
Vol 9 (4) ◽  
pp. 634-641
Author(s):  
A. W. Blackler ◽  
M. Fischberg

There have been many claims for the segregation of Anuran primordial germcells at an early embryonic stage. Most authors agree that these cells may be distinguished with ease in the most dorsal region of the larval endoderm and, somewhat later in development, at the base of the dorsal mesentery and in the undifferentiated gonad (see review by Johnston, 1951). Bounoure (1934) and Blackler (1958) claim to have traced the origin of the primordial germ-cells as early in development as the late blastula stage and to have recognized cell inclusions that become restricted to the germ line at all stages between the fertilized egg and the late blastula. As pointed out by Everett (1945), some workers in this field of embryological study have firmly denied the existence of primordial germ-cells, while others have been cautious of accepting the principle that these cells give rise to any of the definitive sex-cells (gametes).


Development ◽  
1987 ◽  
Vol 100 (4) ◽  
pp. 735-743 ◽  
Author(s):  
S. Holwill ◽  
J. Heasman ◽  
C.R. Crawley ◽  
C.C. Wylie

An intriguing aspect of developmental biology is the extent to which early development is controlled by the spatial arrangement of molecules in the oocyte. Ultraviolet (u.v.) irradiation of the vegetal pole of the fertilized egg of Xenopus laevis affects both the development of the embryonic dorsal axis and also the formation of primordial germ cells (PGCs). However, the importance of cytoplasmic localization in the oocyte has been difficult to assess because, until recently, it has proved impossible to mature and fertilize cultured oocytes routinely. In this report, we describe a method for routinely maturing and fertilizing cultured oocytes of Xenopus. We find that the u.v.-sensitive period for PGC and dorsal axis formation extends back into stage-VI oocytes, thus demonstrating a true oocyte contribution to these processes. This method also allows greater time for experimental intervention and should facilitate the eventual isolation of the molecules concerned.


Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 251-258
Author(s):  
Andy McMahon ◽  
Mandy Fosten ◽  
Marilyn Monk

The pattern of expression of the two X chromosomes was investigated in pre-meiotic germ cells from 12½-day-old female embryos heterozygous for the variant electrophoretic forms of the X-linked enzyme phosphoglycerate kinase (PGK-1). If such germ cells carry the preferentially active Searle's translocated X chromosome (Lyon, Searle, Ford & Ohno, 1964), then only the Pgk-1 allele on this chromosome is expressed. This confirms Johnston's evidence (1979,1981) that Pgk-1 expression reflects a single active X chromosome at this time. Extracts of 12½-day germ cells from heterozygous females carrying two normal X chromosomes show both the A and the B forms of PGK; since only one X chromosome in each cell is active, different alleles must be expressed in different cells, suggesting that X-chromosome inactivation is normally random in the germ line. This result makes it unlikely that germ cells are derived from the yolk-sac endoderm where the paternally derived X chromosome is preferentially inactivated. In their pattern of X-chromosome inactivation, germ cells evidently resemble other tissues derived from the epiblast.


Development ◽  
1990 ◽  
Vol 109 (4) ◽  
pp. 911-923 ◽  
Author(s):  
A. Orr-Urtreger ◽  
A. Avivi ◽  
Y. Zimmer ◽  
D. Givol ◽  
Y. Yarden ◽  
...  

Developmental expression of the c-kit proto-oncogene, a receptor tyrosine kinase encoded by the W locus, was investigated by in situ hybridization in normal mouse embryos. Early after implantation transcripts were detectable only in the maternal placenta (6 1/2-7 1/2 days p.c.). Subsequently (8 1/2 days p.c.) numerous ectodermal (neural tube, sensory placodes) and endodermal (embryonic gut) derivatives expressed c-kit. Later transcripts were detected also in the blood islands of the yolk sac and in the embryonic liver, the main sites of embryonic hemopoiesis. Around midgestation, transcripts accumulated in the branchial pouches and also in primordial germ cells of the genital ridges. This complex pattern of expression remained characteristic also later in gestation, when c-kit was expressed in highly differentiated structures of the craniofacial area, in presumptive melanoblasts and in the CNS. In the adult ovary, maternal c-kit transcripts were detected. They were present in the oocytes of both immature and mature ovarian follicles, but not in the male germ line, where c-kit expression may be down regulated. Thus, c-kit activity is complex and appears in multiple tissues including those that also display defects in mutations at the W locus where c-kit is encoded. Correlation between W phenotypes and c-kit expression, as well as the regulation of the complex and multiple expression of polypeptide growth factors and receptors, is discussed.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 527-535
Author(s):  
K. Ikenishi ◽  
Y. Tsuzaki

To determine whether the location of ‘germ plasm’-bearing cells [presumptive primordial germ cells (pPGCs)] is crucial for their differentiation into PGCs in Xenopus, [3H]thymidine-labelled pPGCs were implanted into the anterior or posterior halves of the endoderm in unlabelled host neurulae. Labelled PGCs in the genital ridges of experimental tadpoles were investigated by autoradiography. When the labelled pPGCs were implanted into posterior halves of the endoderm where host pPGCs are situated, 65 and 77% of the experimental tadpoles (designated as p-tadpoles) had the labelled PGCs in series I and II, respectively. When implanted into the anterior halves, 20 and 27% of the experimental tadpoles (a- tadpoles) had the labelled PGCs in series I and II, respectively. In p-tadpoles, the average numbers of labelled PGCs per tadpole were 8á7 in series I and 10 in series II, whereas they were 2á0 in a-tadpoles of both series. Both the proportion and the average number in p-tadpoles of both series were significantly different from those in a-tadpoles. In both series, labelled PGCs in p-tadpoles were found to be distributed throughout the genital ridges while those in a-tadpoles were localized only in the anterior part of the ridges. These facts indicate that the location of pPGCs in the endoderm affects their successful migration into the genital ridges, and that not only the presence of the germ plasm but also the proper location in endoderm are prerequisites to PGC differentiation of the germ line cells.


Development ◽  
1972 ◽  
Vol 28 (2) ◽  
pp. 385-395
Author(s):  
Noriyuki Satoh ◽  
Nobuo Egami

Mitotic and meiotic activities of germ cells during early development in the medaka, Oryzias latipes, are dealt with in this report. Primordial germ cells were obviously distinguishable from somatic cells 3 days after fertilization and began to proliferate about 7 days after fertilization. The mean number of primordial germ cells increased during a period of 7–10 days after fertilization, reaching about 90 immediately before hatching. Newly hatched fry could be classified into two types according to the number and the nucleic activity of germ cells in the gonadal rudiment. One type consisted of fry containing about 100 germ cells and no cells in the meiotic prophase. In the other type of fry the number of germ cells increased by mitotic divisions and some of the cells began to enter into the meiotic prophase. During the course of further development the fry of the former type differentiated into males and the latter into females. Therefore it can be concluded that the morphological sex differentiation of germ cells occurs at the time of hatching. However, no sexual differences in the histological structure of somatic elements in the gonad are observable at that time.


Development ◽  
1977 ◽  
Vol 39 (1) ◽  
pp. 221-233
Author(s):  
Masami Wakahara

Larvae of Rana chensinensis developed from fertilized eggs which had been subjected to ultraviolet (u.v.) irradiation on their vegetal hemisphere at a dose of 20000 ergs/mm2 within 60 min of fertilization contained no primordial germ cells (PGCs) when examined histologically at the stage when the operculum was complete (8 days after fertilization at 18 °C, stage 25 according to Shumway, 1940). The morphogenetic ability of vegetal pole cytoplasm from non-irradiated eggs to establish the PGCs was tested by injecting some fractions of this cytoplasm into the vegetal hemisphere of u.v.-irradiated eggs. Crude homogenate of the vegetal pole cytoplasm without large yolk platelets was able to restore the PGCs when injected into u.v.-irradiated eggs, but a similar fraction from animal half cytoplasm had no ability to form PGCs. The ‘PGC-forming activity’ demonstrated in the crude homogenate of the vegetal pole cytoplasm was not abolished by dialysis, lyophilization and heating to 90 °C for 10 min. When the homogenate was fractionated by differential centrifugation in 0·25 M sucrose, the ‘PGC-forming activity’ was recovered mainly in the precipitate of 15000g for 30 min. The precipitate of 7000 g for 10 min had also a little ‘activity’. The possibility was discussed that the ‘PGC-forming activity’ demonstrated in the vegetal pole cytoplasm was associated with the germinal granules in the germ plasm rather than the mitochondria.


Sign in / Sign up

Export Citation Format

Share Document