scholarly journals Transforming growth factor β3 deficiency promotes defective lipid metabolism and fibrosis in kidney

Author(s):  
Elia Escasany ◽  
Borja Lanzón ◽  
Almudena García-Carrasco ◽  
Adriana Izquierdo-Lahuerta ◽  
Lucía Torres ◽  
...  

Glomerulosclerosis and tubulointerstitial fibrosis are pathological features of chronic kidney disease. Transforming growth factor β (TGFβ) is a key player in the development of fibrosis. However, of the three known TGFβ isoforms, only TGFβ1 has an established role in fibrosis, and the pathophysiological relevance of TGFβ2 and TGFβ3 is unknown. Because Tgfβ3 deficiency in mice results in early postnatal lethality, we analyzed the kidney phenotype of heterozygous Tgfβ3-knockout mice (Tgfβ3+/-) and compared it with that of matched wild-type mice. Four-month-old Tgfβ3+/- mice exhibited incipient renal fibrosis with epithelial-to-mesenchymal transition, in addition to glomerular basement membrane thickening and podocyte foot process effacement associated with albuminuria. Also evident was insulin resistance and oxidative stress at the renal level together with aberrant renal lipid metabolism and mitochondrial function. Omics analysis showed toxic species such as diacylglycerides and ceramides in Tgfβ3+/- mice, and dysregulated mitochondrial metabolism. Kidney of Tgfβ3+/- mice showed morphological alterations of mitochondria and overactivation of non-canonical MAPK ERK1/2 and JNK cascades. Our study shows that renal TGFβ3 might have antifibrotic and renoprotective properties, opposing or counteracting the activity of TGFβ1.

2017 ◽  
Vol 37 (18) ◽  
Author(s):  
Erik Hedrick ◽  
Stephen Safe

ABSTRACT Transforming growth factor β (TGF-β)-induced migration of triple-negative breast cancer (TNBC) cells is dependent on nuclear export of the orphan receptor NR4A1, which plays a role in proteasome-dependent degradation of SMAD7. In this study, we show that TGF-β induces p38α (mitogen-activated protein kinase 14 [MAPK14]), which in turn phosphorylates NR4A1, resulting in nuclear export of the receptor. TGF-β/p38α and NR4A1 also play essential roles in the induction of epithelial-to-mesenchymal transition (EMT) and induction of β-catenin in TNBC cells, and these TGF-β-induced responses and nuclear export of NR4A1 are blocked by NR4A1 antagonists, the p38 inhibitor SB202190, and kinase-dead [p38(KD)] and dominant-negative [p38(DN)] forms of p38α. Inhibition of NR4A1 nuclear export results in nuclear export of TGF-β-induced β-catenin, which then undergoes proteasome-dependent degradation. TGF-β-induced β-catenin also regulates NR4A1 expression through formation of the β-catenin–TCF-3/TCF-4/LEF-1 complex on the NR4A1 promoter. Thus, TGF-β-induced nuclear export of NR4A1 in TNBC cells plays an essential role in cell migration, SMAD7 degradation, EMT, and induction of β-catenin, and all of these pathways are inhibited by bis-indole-derived NR4A1 antagonists that inhibit nuclear export of the receptor and thereby block TGF-β-induced migration and EMT.


2018 ◽  
Vol 315 (3) ◽  
pp. H658-H668 ◽  
Author(s):  
Danah S. Al-Hattab ◽  
Hamza A. Safi ◽  
Raghu S. Nagalingam ◽  
Rushita A. Bagchi ◽  
Matthew T. Stecy ◽  
...  

Numerous physiological and pathological events, from organ development to cancer and fibrosis, are characterized by an epithelial-to-mesenchymal transition (EMT), whereby adherent epithelial cells convert to migratory mesenchymal cells. During cardiac development, proepicardial organ epithelial cells undergo EMT to generate fibroblasts. Subsequent stress or damage induces further phenotype conversion of fibroblasts to myofibroblasts, causing fibrosis via synthesis of an excessive extracellular matrix. We have previously shown that the transcription factor scleraxis is both sufficient and necessary for the conversion of cardiac fibroblasts to myofibroblasts and found that scleraxis knockout reduced cardiac fibroblast numbers by 50%, possibly via EMT attenuation. Scleraxis induced expression of the EMT transcriptional regulators Twist1 and Snai1 via an unknown mechanism. Here, we report that scleraxis binds to E-box consensus sequences within the Twist1 and Snai1 promoters to transactivate these genes directly. Scleraxis upregulates expression of both genes in A549 epithelial cells and in cardiac myofibroblasts. Transforming growth factor-β induces EMT, fibrosis, and scleraxis expression, and we found that transforming growth factor-β-mediated upregulation of Twist1 and Snai1 completely depends on the presence of scleraxis. Snai1 knockdown upregulated the epithelial marker E-cadherin; however, this effect was lost after scleraxis overexpression, suggesting that scleraxis may repress E-cadherin expression. Together, these results indicate that scleraxis can regulate EMT via direct transactivation of the Twist1 and Snai1 genes. Given the role of scleraxis in also driving the myofibroblast phenotype, scleraxis appears to be a critical controller of fibroblast genesis and fate in the myocardium and thus may play key roles in wound healing and fibrosis. NEW & NOTEWORTHY The molecular mechanism by which the transcription factor scleraxis mediates Twist1 and Snai1 gene expression was determined. These results reveal a novel means of transcriptional regulation of epithelial-to-mesenchymal transition and demonstrate that transforming growth factor-β-mediated epithelial-to-mesenchymal transition is dependent on scleraxis, providing a potential target for controlling this process.


Sign in / Sign up

Export Citation Format

Share Document