A hypothesis on the traffic of MG160, a medial Golgi sialoglycoprotein, from the trans-Golgi network to the Golgi cisternae

1994 ◽  
Vol 107 (3) ◽  
pp. 529-537 ◽  
Author(s):  
P.A. Johnston ◽  
A. Stieber ◽  
N.K. Gonatas

We have reported that MG160, an intrinsic membrane sialoglycoprotein of the Golgi apparatus (GA), resides in the medial cisternae of the organelle (Gonatas et al. (1989) J. Biol. Chem. 264, 646–653). In order to resolve the question whether MG160 acquires sialic acid residues in the trans cisternae or trans-Golgi network (TGN) prior to its retrograde transport, we have examined the effects of brefeldin A (BFA) on the post-translational processing of MG160, and the distribution of internalized wheat germ agglutinin covalently linked with HRP (WGA-HRP), which labels the TGN (Gonatas et al. (1977) J. Cell Biol. 73, 1–13). In BFA-treated PC12 cells, MG160 acquires resistance to endo H, but fails to be sialylated. This effect occurs in parallel with the redistribution of MG160 into an ER compartment dispersed throughout the cytoplasm including the nuclear envelope, and the collapse of the WGA-HRP-labelled TGN into vesicles and tubules surrounding the centriole. These results suggest that MG160 is not sialylated in BFA-treated cells because it is sequestered from the sialyltransferase enzyme(s), presumably located in the TGN, and provide evidence supporting the hypothesis for a retrograde transport pathway that recycles resident GA proteins, including MG160, between the Golgi cisternae and the TGN. To examine further the above hypothesis we studied cells treated with BFA and then allowed to recover from the effect of the drug for various lengths of time. After 15 minutes of recovery, cisternae of the Golgi apparatus, typically found in the pericentriolar region, are labeled by both MG160 and WGA-HRP.(ABSTRACT TRUNCATED AT 250 WORDS)

2014 ◽  
Vol 89 (3) ◽  
pp. 1673-1687 ◽  
Author(s):  
Mathieu E. Nonnenmacher ◽  
Jean-Christophe Cintrat ◽  
Daniel Gillet ◽  
Thomas Weber

ABSTRACTIntracellular transport of recombinant adeno-associated virus (AAV) is still incompletely understood. In particular, the trafficking steps preceding the release of incoming AAV particles from the endosomal system into the cytoplasm, allowing subsequent nuclear import and the initiation of gene expression, remain to be elucidated fully. Others and we previously showed that a significant proportion of viral particles are transported to the Golgi apparatus and that Golgi apparatus disruption caused by the drug brefeldin A efficiently blocks AAV serotype 2 (AAV2) transduction. However, because brefeldin A is known to exert pleiotropic effects on the entire endosomal system, the functional relevance of transport to the Golgi apparatus for AAV transduction remains to be established definitively. Here, we show that AAV2 trafficking toward thetrans-Golgi network (TGN) and the Golgi apparatus correlates with transduction efficiency and relies on a nonclassical retrograde transport pathway that is independent of the retromer complex, late endosomes, and recycling endosomes. AAV2 transduction is unaffected by the knockdown of syntaxins 6 and 16, which are two major effectors in the retrograde transport of both exogenous and endogenous cargo. On the other hand, inhibition of syntaxin 5 function by small interfering RNA silencing or treatment with cyclized Retro-2 strongly decreases AAV2 transduction and transport to the Golgi apparatus. This inhibition of transduction is observed with several AAV serotypes and a number of primary and immortalized cells. Together, our data strongly suggest that syntaxin 5-mediated retrograde transport to the Golgi apparatus is a broadly conserved feature of AAV trafficking that appears to be independent of the identity of the receptors used for viral attachment.IMPORTANCEGene therapy constitutes a promising approach for the treatment of life-threatening conditions refractory to any other form of remedy. Adeno-associated virus (AAV) vectors are currently being evaluated for the treatment of diseases such as Duchenne muscular dystrophy, hemophilia, heart failure, Parkinson's disease, and others. Despite their promise as gene delivery vehicles, a better understanding of the biology of AAV-based vectors is necessary to improve further their efficacy. AAV vectors must reach the nucleus in order to deliver their genome, and their intracellular transport is not fully understood. Here, we dissect an important step of the intracellular journey of AAV by showing that retrograde transport of capsids to thetrans-Golgi network is necessary for gene delivery. We show that the AAV trafficking route differs from that of known Golgi apparatus-targeted cargos, and we raise the possibility that this nonclassical pathway is shared by most AAV variants, regardless of their attachment receptors.


1998 ◽  
Vol 111 (7) ◽  
pp. 877-885 ◽  
Author(s):  
O. Varlamov ◽  
L.D. Fricker

Carboxypeptidase D (CPD) is a recently discovered membrane-bound metallocarboxypeptidase that has been proposed to be involved in the post-translational processing of peptides and proteins that transit the secretory pathway. In the present study, the intracellular distribution of CPD was examined in AtT-20 cells, a mouse anterior pituitary-derived corticotroph. Antisera to CPD stain the same intracellular structures as those labeled with furin and wheat germ agglutinin. This distribution is distinct from carboxypeptidase E, which is localized to the secretory vesicles in the cell processes. The perinuclear distribution of CPD is detected even when the AtT-20 cells are treated with brefeldin A for 1–30 minutes, suggesting that CPD is present in the trans-Golgi network (TGN). Although CPD is predominantly found in the TGN, an antiserum to the full length protein is internalized within 15–30 minutes of incubation at 37 degrees C. In contrast, an antiserum raised against the C-terminal region of CPD does not become internalized, suggesting that this domain is cytosolic. The antiserum to the full length CPD is internalized to a structure that co-stains with furin and wheat germ agglutinin, but is distinct from transferrin recycling endosomes. The internalization of CPD is not substantially affected by treatment of the AtT-20 cells with brefeldin A. These data are consistent with the cycling of CPD to the cell surface and back to the TGN. The TGN localization of CPD raises the possibility of a role for this enzyme in the processing of proteins that transit the secretory pathway.


1988 ◽  
Vol 106 (3) ◽  
pp. 617-628 ◽  
Author(s):  
J R Duncan ◽  
S Kornfeld

We have used Chinese hamster ovary (CHO) cells and a murine lymphoma cell line to study the recycling of the 215-kD and the 46-kD mannose 6-phosphate receptors to various regions of the Golgi to determine the site where the receptors first encounter newly synthesized lysosomal enzymes. For assessing return to the trans-most Golgi compartments containing sialyltransferase (trans-cisternae and trans-Golgi network), the oligosaccharides of receptor molecules on the cell surface were labeled with [3H]galactose at 4 degrees C. Upon warming to 37 degrees C, the [3H]galactose residues on both receptors were substituted with sialic acid with a t1/2 approximately 3 hrs. Other glycoproteins acquired sialic acid at least 8-10 times slower. Return of the receptors to the trans-Golgi cisternae containing galactosyltransferase could not be detected. Return to the cis/middle Golgi cisternae containing alpha-mannosidase I was measured by adding deoxymannojirimycin, a mannosidase I inhibitor, during the initial posttranslational passage of [3H]mannose-labeled glycoproteins through the Golgi, thereby preserving oligosaccharides which would be substrates for alpha-mannosidase I. After removal of the inhibitor, return to the early Golgi with subsequent passage through the Golgi complex was measured by determining the conversion of the oligosaccharides from high mannose to complex-type units. This conversion was very slow for the receptors and other glycoproteins (t1/2 approximately 20 h). Exposure of the receptors and other glycoproteins to the dMM-sensitive alpha-mannosidase without movement through the Golgi apparatus was determined by measuring the loss of mannose residues from these proteins. This loss was also slow. These results indicate that both Man-6-P receptors routinely return to the Golgi compartment which contains sialyltransferase and recycle through other regions of the Golgi region less frequently. We infer that the trans-Golgi network is the major site for lysosomal enzyme sorting in CHO and murine lymphoma cells.


1990 ◽  
Vol 111 (3) ◽  
pp. 893-899 ◽  
Author(s):  
N W Chege ◽  
S R Pfeffer

The Golgi complex is composed of at least four distinct compartments, termed the cis-, medial, and trans-Golgi cisternae and the trans-Golgi network (TGN). It has recently been reported that the organization of the Golgi complex is disrupted in cells treated with the fungal metabolite, brefeldin-A. Under these conditions, it was shown that resident enzymes of the cis-, medial, and trans-Golgi return to the ER. We report here that 300-kD mannose 6-phosphate receptors, when pulse-labeled within the ER of brefeldin-A-treated cells, acquired numerous N-linked galactose residues with a half time of approximately 2 h, as measured by their ability to bind to RCA-I lectin affinity columns. In contrast, Limax flavus lectin chromatography revealed that less than 10% of these receptors acquired sialic acid after 8 h in brefeldin-A. Two lines of evidence suggested that proteins within and beyond the TGN did not return to the ER in the presence of brefeldin-A. First, the majority of 300-kD mannose 6-phosphate receptors present in the TGN and endosomes did not return to the ER after up to 6 h in brefeldin-A, as determined by their failure to contact galactosyltransferase that had relocated there. Moreover, although mannose 6-phosphate receptors did not acquire sialic acid when present in the ER of brefeldin-A-treated cells, they were readily sialylated when labeled at the cell surface and transported to the TGN. These experiments indicate that galactosyltransferase, a trans-Golgi enzyme, returns to the endoplasmic reticulum in the presence of brefeldin-A, while the bulk of sialyltransferase, a resident of the TGN, does not. Our findings support the proposal that the TGN is a distinct, fourth compartment of the Golgi apparatus that is insensitive to brefeldin-A.


2003 ◽  
Vol 120 (2) ◽  
pp. 121-128 ◽  
Author(s):  
Monika Vetterlein ◽  
Majid Niapir ◽  
Adolf Ellinger ◽  
Josef Neum�ller ◽  
Margit Pavelka

2007 ◽  
Vol 18 (12) ◽  
pp. 4979-4991 ◽  
Author(s):  
Zi Zhao Lieu ◽  
Merran C. Derby ◽  
Rohan D. Teasdale ◽  
Charles Hart ◽  
Priscilla Gunn ◽  
...  

Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane–TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.


2001 ◽  
Vol 114 (22) ◽  
pp. 4013-4024
Author(s):  
Jayasri Das Sarma ◽  
Rita A. Meyer ◽  
Fushan Wang ◽  
Valsamma Abraham ◽  
Cecilia W. Lo ◽  
...  

Cells that express multiple connexins have the capacity to form heteromeric (mixed) gap junction hemichannels. We used a dominant negative connexin construct, consisting of bacterial β-galactosidase fused to the C terminus of connexin43 (Cx43/β-gal), to examine connexin compatibility in NIH 3T3 cells. Cx43/β-gal is retained in a perinuclear compartment and inhibits Cx43 transport to the cell surface. The intracellular connexin pool induced by Cx43/β-gal colocalized with a medial Golgi apparatus marker and was readily disassembled by treatment with brefeldin A. This was unexpected, since previous studies indicated that Cx43 assembly into hexameric hemichannels occurs in the trans-Golgi network (TGN) and is sensitive to brefeldin A. Further analysis by sucrose gradient fractionation showed that Cx43 and Cx43/β-gal were assembled into a subhexameric complex. Cx43/β-gal also specifically interacted with Cx46, but not Cx32, consistent with the ability of Cx43/β-gal to simultaneously inhibit multiple connexins. We confirmed that interactions between Cx43/β-gal and Cx46 reflect the ability of Cx43 and Cx46 to form heteromeric complexes, using HeLa and alveolar epithelial cells, which express both connexins. In contrast, ROS osteoblastic cells, which differentially sort Cx43 and Cx46, did not form Cx43/Cx46 heteromers. Thus, cells have the capacity to regulate whether or not compatible connexins intermix.


1999 ◽  
Vol 112 (11) ◽  
pp. 1721-1732 ◽  
Author(s):  
M.J. Francis ◽  
E.E. Jones ◽  
E.R. Levy ◽  
R.L. Martin ◽  
S. Ponnambalam ◽  
...  

The protein encoded by the Menkes disease gene (MNK) is localised to the Golgi apparatus and cycles between the trans-Golgi network and the plasma membrane in cultured cells on addition and removal of copper to the growth medium. This suggests that MNK protein contains active signals that are involved in the retention of the protein to the trans-Golgi network and retrieval of the protein from the plasma membrane. Previous studies have identified a signal involved in Golgi retention within transmembrane domain 3 of MNK. To identify a motif sufficient for retrieval of MNK from the plasma membrane, we analysed the cytoplasmic domain, downstream of transmembrane domain 7 and 8. Chimeric constructs containing this cytoplasmic domain fused to the reporter molecule CD8 localised the retrieval signal(s) to 62 amino acids at the C terminus. Further studies were performed on putative internalisation motifs, using site-directed mutagenesis, protein expression, chemical treatment and immunofluorescence. We observed that a di-leucine motif (L1487L1488) was essential for rapid internalisation of chimeric CD8 proteins and the full-length Menkes cDNA from the plasma membrane. We suggest that this motif mediates the retrieval of MNK from the plasma membrane into the endocytic pathway, via the recycling endosomes, but is not sufficient on its own to return the protein to the Golgi apparatus. These studies provide a basis with which to identify other motifs important in the sorting and delivery of MNK from the plasma membrane to the Golgi apparatus.


2005 ◽  
Vol 29 (3) ◽  
pp. 453-461 ◽  
Author(s):  
Tina Wahle ◽  
Kai Prager ◽  
Nikolai Raffler ◽  
Christian Haass ◽  
Michael Famulok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document