scholarly journals Possible continuity of subplasmalemmal cytoplasmic network with basement membrane cord network: ultrastructural study

1995 ◽  
Vol 108 (5) ◽  
pp. 1971-1976
Author(s):  
S. Inoue

The ultrastructure of the subplasmalemmal cytoplasm of the cell and the associated basement membrane as well as the area of the cell-basement membrane border were observed with high resolution electron microscopy after preparation of the tissues with cryofixation or glutaraldehyde fixation followed by freeze substitution. The subplasmalemmal cytoplasm of the smooth muscle cells of rat epididymal tubules and the podocyte processes of the mouse glomerular visceral epithelium were found to be composed of a fine network of irregular anastomosing strands. This network closely resembled the previously characterized cord network of the basement membrane. The cords are known to be composed of a 1.5 to 3 nm thick core filament made up of type IV collagen which is surrounded by an irregular ‘sheath’ of other components. The strands in the subplasmalemmal network showed ultrastructural features similar to those of the cord network. Ribbon-like, 4.5 nm wide heparan sulfate proteoglycan ‘double tracks’ were previously reported to be associated with the cord network. Structures similar in size and appearance to the double tracks were also found in the subplasmalemmal network. At the cell-basement membrane border, the lamina densa of the basement membrane was in contact with the cell without the intervening space of a lamina lucida which was recently found to be an artefact caused by conventional tissue processing. Furthermore, the subplasmalemmal network appeared to be continuous through the plasma membrane, with the cord network of the basement membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

2000 ◽  
Vol 113 (5) ◽  
pp. 859-868 ◽  
Author(s):  
A. Furuyama ◽  
K. Mochitate

We found that immortalized alveolar type II epithelial cells (SV40-T2 cells) that were cultured on dense fibrillar collagen supplemented with Matrigel gel formed a thin and continuous lamina densa beneath them. Immunohistochemical analysis of laminin-1, type IV collagen, entactin (nidogen) and perlecan in the culture indicated that all these components were integrated into a sheet structure of basement membrane beneath the cells. Analysis of the temporal and spatial distribution of the basement membrane macromolecules revealed that the initial deposits of laminin-1 and entactin were significantly greater in area in the presence of Matrigel. These globular deposits and the coarse mesh of basement membrane macromolecules developed into a flat membranous basement membrane. In the absence of Matrigel, the SV40-T2 cells failed to form a continuous lamina densa, and the deposits stayed in the coarse mesh. The major biotinylated Matrigel components that were integrated into the basement membrane were laminin-1 and entactin. Furthermore, SV40-T2 cells supplemented with exogenous laminin-1 alone as well as laminin-1 contaminated with entactin formed a continuous lamina densa. These results indicate that the laminin-1 and entactin supplied from the Matrigel were incorporated into a basement membrane beneath the SV40-T2 cells, and contributed to the formation of basement membrane. Therefore, we concluded that the alveolar epithelial cells synthesize laminin-1, entactin, type IV collagen, and perlecan, but that they also needed to assemble exogenous laminin-1 into the basement membrane to complete its formation in vitro.


1986 ◽  
Vol 189 (1) ◽  
pp. 205-216 ◽  
Author(s):  
G.W. Laurie ◽  
J.T. Bing ◽  
H.K. Kleinman ◽  
J.R. Hassell ◽  
M. Aumailley ◽  
...  

1988 ◽  
Vol 36 (3) ◽  
pp. 271-283 ◽  
Author(s):  
D S Grant ◽  
C P Leblond

A series of basement membranes was immunolabeled for laminin, type IV collagen, and heparan sulfate proteoglycan in the hope of comparing the content of these substances. The basement membranes, including thin ones (less than 0.3 micron) from kidney, colon, enamel organ, and vas deferens, and thick ones (greater than 2 micron), i.e., Reichert's membrane, Descemet's membrane, and EHS tumor matrix, were fixed in formaldehyde, embedded in Lowicryl, and treated with specific antisera or antibodies followed by anti-rabbit immunoglobulin bound to gold. The density of gold particles, expressed per micron2, was negligible in controls (less than or equal to 1.1), but averaged 307, 146, and 23, respectively, for laminin, collagen IV, and proteoglycan over the thick basement membranes (except for Descemet's membranes, over which the density was 16, 5, and 34, respectively) and 117, 72, and 64, respectively, over the lamina densa of the thin basement membranes. Lower but significant reactions were observed over the lamina lucida. Interpretation of the gold particle densities was based on (a) the similarity between the ultrastructure of most thick basement membranes and of the lamina densa of most thin basement membranes, and (b) the biochemical content of the three substances under study in the EHS tumor matrix (Eur J Biochem 143:145, 1984). It was proposed that thick basement membranes (except Descemet's) contained more laminin and collagen IV but less heparan sulfate proteoglycan than the lamina densa of thin basement membranes. In the latter, there was a fair variation from tissue to tissue, but a tendency towards a similar molar content of the three substances.


1983 ◽  
Vol 31 (1) ◽  
pp. 35-45 ◽  
Author(s):  
I Leivo

Teratocarcinoma-derived endodermal PYS-2 cells are known to synthesize an extracellular matrix containing the basement membrane molecules laminin, type IV collagen, and heparan sulfate proteoglycan as major constituents (I. Leivo, K. Alitalo, L. Risteli, A. Vaheri, R. Timpl, J. Wartiovaara, Exp Cell Res 137:15-23, 1982). Immunoferritin techniques with specific antibodies were used in the present study to define the ultrastructural localization of the above constituents in the fibrillar network. Laminin was detected in matrix network adjacent to the basal cell membrane and in protruding matrix fibrils that connect the matrix to the cell membrane. Ruthenium red-stainable heparinase-sensitive 10- to 20-nm particles were often present at the junction of the attachment fibrils and the matrix network, or along the attachment fibrils. A corresponding distribution of ferritin label was observed for basement membrane heparan sulfate proteoglycan. Type IV collagen was found in the matrix network but not in the attachment fibrils. The results suggest that the PYS-2 cells are connected to their pericellular matrix by fibrils containing laminin associated with heparan sulfate-containing particles. These results may also have relevance for the attachment of epithelial cells to basement membranes.


1982 ◽  
Vol 95 (1) ◽  
pp. 340-344 ◽  
Author(s):  
G W Laurie ◽  
C P Leblond ◽  
G R Martin

Electron microscopic immunostaining of rat duodenum and incisor tooth was used to examine the location of four known components of the basement-membrane region: type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin. Antibodies or antisera against these substances were localized by direct or indirect peroxidase methods on 60-microns thick slices of formaldehyde-fixed tissues. In the basement-membrane region of the duodenal epithelium, enamel-organ epithelium, and blood-vessel endothelium, immunostaining for all four components was observed in the basal lamina (also called lamina densa). The bulk of the lamina lucida (rara) was unstained, but it was traversed by narrow projections of the basal lamina that were immunostained for all four components. In the subbasement-membrane fibrous elements or reticular lamina, immunostaining was confined to occasional "bridges" extending from the epithelial basal-lamina to that of adjacent capillaries. The joint presence of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin in the basal lamina indicates that these substances do not occur in separate layers but are integrated into a common structure.


2002 ◽  
Vol 115 (5) ◽  
pp. 1005-1015 ◽  
Author(s):  
Maria V. Tsiper ◽  
Peter D. Yurchenco

Laminins are important for Schwann cell basement membrane assembly and axonal function. In this study, we found that exogenous laminin-1, like neuromuscular laminins-2/4, formed two distinct extracellular matrices on Schwann cell surfaces, each facilitated by laminin polymerization. Assembly of one, a densely-distributed reticular matrix, was accompanied by a redistribution of cell-surface dystroglycan and cytoskeletal utrophin into matrix-receptor-cytoskeletal complexes. The other, a fibrillar matrix,accumulated in separate zones associated with pre-existing β1-integrin arrays. The laminin-1 fragment E3 (LG-modules 4-5), which binds dystroglycan and heparin, inhibited reticular-matrix formation. By contrast,β1-integrin blocking antibody (Ha2/5) prevented fibrillar assembly. Ultrastructural analysis revealed that laminin treatment induced the formation of a linear electron-dense extracellular matrix (lamina densa)separated from plasma membrane by a narrow lucent zone (lamina lucida). This structure was considerably reduced with non-polymerizing laminin, fully blocked by E3, and unaffected by Ha2/5. Although it formed in the absence of type IV collagen, it was nonetheless able to incorporate this collagen. Finally, cell competency to bind laminin and form a basement membrane was passage-dependent. We postulate that laminin induces the assembly of a basement membrane on competent cell surfaces probably mediated by anchorage through LG 4-5. Upon binding, laminin interacts with dystroglycan,mobilizes utrophin, and assembles a `nascent' basement membrane, independent of integrin, that is completed by incorporation of type IV collagen. However,the fibrillar β1-integrin dependent matrix is unlikely to be precursor to basement membrane.


Author(s):  
J.P Cassella ◽  
H. Shimizu ◽  
A. Ishida-Yamamoto ◽  
R.A.J. Eady

1nm colloidal gold with silver enhancement has been used in conjunction with a low-temperature post-embedding (post-E) technique for the demonstration of skin antigens at both the light microscopic (LM) and electron microscopic (EM) levels.Keratin filaments and basement membrane zone (BMZ) associated antigens in normal human skin (NHS) were immunolabelled using antibodies against keratin 14, 10, and 1, the carboxy-terminus and collagenous portion of type VII collagen, type IV collagen and bullous pemphigoid antigen (BP-Ag).Fresh samples of NHS were cryoprotected in 15% glycerol, cryofixed in propane at -190°C, subjected to freeze substitution in methanol at -80°C and embedded in Lowicryl K11M at -60°C. Polymerisation of the resin was initiated under UVR at - 60°C for 48 hours and continued at room temperature for a further 48 hours. Semith in sections were air dried onto slides coated with 3-aminopropyltriethoxysilane. The following immunolabelling protocol was adopted: Primary antibody was applied for 2 hours at 37°C or overnight at 4°C. Following washing in Dulbecco’s phosphate buffered saline (PBSA) a biotinylated secondary antibody was applied for 2 hours at 37°C. The sections were further washed in PBSA and 1nm gold avidin was applied. Sections were finally washed in PBSA and silver enhanced.


Author(s):  
K. A. Holbrook

The dermal-epidermal junction (DEJ), or basement membrane rone, is the boundary between the epithelial and mesenchymal compartments of the skin; epidermal and fibroblastic cells in these two regions collaborate to synthesire its components. Ultrastructural studies (TEM and SEM) have defined a series of planes or layers (basal epidermal, lamina lucida, lamina densa, sublamina densa) and the morphology and density of attachment structures (hemidesmosomes, anchoring filaments, anchoring fibrils and anchoring plaques) in this region of normal skin. Change in structure of the DEJ provides information about the history of the tissue; reduplication of the lamina densa, for example, indicates a site of cell detachment or migration, or remodelling that accompanies repair of focal damage. In normal skin the structure of the DEJ is stable; in pathologic conditions it can be compromised by the congenital absence of certain structures or antigens (e.g., in the inherited disorders, epidermolysis bullosa [EB]) or by enzymatic degradation (e.g., in tumor invasion). Dissolution of the DEJ can also occur normally during the formation of epidermal appendages (e.g., hair follicles) and as melanocytes and Langerhans cells migrate into the epidermis during development.Biochemical and immunohisto/cytochemical studies have identified more than 20 molecules at the DEJ. These include well known matrix molecules (e.g., types IV and V collagen, laminin and fibronectin) and skin-specific antigens. The latter have been identified by autoantibodies or specific polyclonal or monoclonal antibodies raised against the skin, cultured cells and other epithelia. Some of the molecules of the DEJ are are present in basement membrane zones of many epithelia and thus are considered ubiquitous components (type IV, V, laminin, fibronectin, nidogen, entactin, HSPG, LDA-1, CSP [3B3]). All of them (that have been investigated in developing skin) appear ontogenetically as early as human embryonic tissue can be obtained and their expression is typically normal in patients with EB. The known properties of many of these molecules (particularly the matrix components) suggest functions they might impart to the DEJ: support of an epithelium (type IV collagen), regulation of permeability (heparan sulfate proteoglycan) or facilitation of cell attachment (fibronectin) and movement (laminin). Another group of matrix components and antigens of the DEJ includes molecules that are skin-specific or characteristic of stratified squamous epithelia (type VII collagen=LH 7:2 antigen, bullous pemphigoid antigen, AA3, GB3, KF-1,19-DEJ-1, epidermolysis bullosa acquisita antigen [EBA], AF-1 and AF-2, cicatricial pemphigoid antigen [CPA]) . These molecules are expressed in the DEJ later in development than the first group of molecules, in conjunction with the morphologic appearance of the structure they represent. Their appearance is also coordinated with specific developmental events (e.g., epidermal stratification) and the expression of molecules of differentiation in the epidermis and dermis. One or more of them is typically absent or reduced in expression in the skin of patients with heritable disorders affecting this region. There is no apparent correlation between the location of molecules in the DEJ and the stability of their expression.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yuexin Wu ◽  
Yuyan Cao ◽  
Keren Xu ◽  
Yue Zhu ◽  
Yuemei Qiao ◽  
...  

AbstractLiver cirrhosis remains major health problem. Despite the progress in diagnosis of asymptomatic early-stage cirrhosis, prognostic biomarkers are needed to identify cirrhotic patients at high risk developing advanced stage disease. Liver cirrhosis is the result of deregulated wound healing and is featured by aberrant extracellular matrix (ECM) remodeling. However, it is not comprehensively understood how ECM is dynamically remodeled in the progressive development of liver cirrhosis. It is yet unknown whether ECM signature is of predictive value in determining prognosis of early-stage liver cirrhosis. In this study, we systematically analyzed proteomics of decellularized hepatic matrix and identified four unique clusters of ECM proteins at tissue damage/inflammation, transitional ECM remodeling or fibrogenesis stage in carbon tetrachloride-induced liver fibrosis. In particular, basement membrane (BM) was heavily deposited at the fibrogenesis stage. BM component minor type IV collagen α5 chain expression was increased in activated hepatic stellate cells. Knockout of minor type IV collagen α5 chain ameliorated liver fibrosis by hampering hepatic stellate cell activation and promoting hepatocyte proliferation. ECM signatures were differentially enriched in the biopsies of good and poor prognosis early-stage liver cirrhosis patients. Clusters of ECM proteins responsible for homeostatic remodeling and tissue fibrogenesis, as well as basement membrane signature were significantly associated with disease progression and patient survival. In particular, a 14-gene signature consisting of basement membrane proteins is potent in predicting disease progression and patient survival. Thus, the ECM signatures are potential prognostic biomarkers to identify cirrhotic patients at high risk developing advanced stage disease.


Sign in / Sign up

Export Citation Format

Share Document