Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function

1995 ◽  
Vol 108 (5) ◽  
pp. 2017-2025 ◽  
Author(s):  
R.J. Aitken ◽  
M. Paterson ◽  
H. Fisher ◽  
D.W. Buckingham ◽  
M. van Duin

The redox status of human spermatozoa was found to have a profound influence on the fertilizing potential of these cells in association with qualitative and quantitative changes in the patterns of tyrosine phosphorylation. In general, oxidizing conditions enhanced tyrosine phosphorylation and stimulated sperm function, whereas reducing conditions had the opposite effect. Unstimulated human spermatozoa exhibited low levels of spontaneous acrosomal exocytosis and sperm-oocyte fusion and minimal reactive oxygen species generation, while phosphotyrosine expression was largely confined to a single protein of 116 kDa. However, if the spermatozoa were exposed to oxidizing conditions through the addition of exogenous H2O2, or the stimulation of endogenous NADPH-dependent reactive oxygen species generation, then a dramatic increase in tyrosine phosphorylation was observed (major phosphotyrosyl bands at 222 kDa, 200 kDa, 159 kDa, 133 kDa, 116 kDa and 82 kDa) in concert with the functional activation of the spermatozoa. A causal association between reactive oxygen species generation, tyrosine phosphorylation and sperm function was indicated by studies with the ionophore, A23187, which induced high rates of spermoocyte fusion together with enhanced rates of reactive oxygen species production and the increased expression of phosphotyrosyl proteins. This functional response to A23187 could be abrogated, without any concomitant change in sperm motility or viability, by using membrane permeant thiols or catalase to suppress the reactive oxygen species-induced increase in phosphotyrosine expression. The fact that the biological responses of human spermatozoa to biological agonists (recombinant human ZP3 and progesterone) could also be inhibited by catalase indicated the general relevance of these findings.(ABSTRACT TRUNCATED AT 250 WORDS)

1995 ◽  
Vol 7 (4) ◽  
pp. 659 ◽  
Author(s):  
RJ Aitken

The cellular generation of reactive oxygen species was first observed in mammalian spermatozoa in the late 1940s. The field then remained dormant for 30 years until Thaddeus Mann and Roy Jones published a series of landmark papers in the 1970s in which the importance of lipid peroxidation as a mechanism for damaging mammalian spermatozoa was first intimated. The subsequent demonstration that human spermatozoa produce reactive oxygen species and are susceptible to peroxidative damage has triggered intense interest in the role of oxidative stress in the aetiology of male infertility. Moreover, data have recently been obtained to indicate that, although excessive exposure to reactive oxygen species may be harmful to spermatozoa, in physiological amounts these molecules are of importance in the control of normal sperm function. This review considers the dualistic role of reactive oxygen species and sets out the current understanding of the importance of oxidative processes in both the physiology and the pathology of the human spermatozoon. Extra keywords: human spermatozoa, reactive oxygen species.


Andrologia ◽  
2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
J. Cicaré ◽  
A. Caille ◽  
C. Zumoffen ◽  
S. Ghersevich ◽  
L. Bahamondes ◽  
...  

Author(s):  
Mojdeh Hosseinpoor Kashani ◽  
Mina Ramezani ◽  
Zeinab Piravar

Background: Acrylamide (AA) is a reactive molecule produced during food processing at temperatures above 120°C. Objective: To evaluate the impact of different concentrations of AA on human sperm parameters, oxidative stress and total antioxidant capacity (TAC). Materials and Methods: In this laboratory study, semen samples were obtained from healthy donors referred to the Taleghani Hospital, Tehran, Iran between June and July 2019. Samples were divided into four groups (n = 10/each): one control and three treatment groups (0.5, 1, and 2 mM of AA). After 2 hr of exposure to AA, the superoxide dismutase and malondialdehyde levels were measured based on colorimetric methods. The TAC was determined by the ferric-reducing antioxidant power assay. Flow cytometry was performed to measure the intracellular reactive oxygen species generation. Also, immunohistochemistry was done to determine the effect of AA on tyrosine phosphorylation and carboxymethyl-lysine expression. Results: Results of the study demonstrated that the motility and viability of spermatozoa were significantly decreased after AA exposure (p < 0.001). This decrease was also seen in the TAC and superoxide dismutase activity as well as in the phosphotyrosine percentage compared with the control (p < 0.01). However, the carboxymethyllysine and prooxidant activity including reactive oxygen species generation and lipid peroxidation level increased (p < 0.001). Conclusion: Overall, the results confirmed the detrimental effect of AA on human spermatozoa which may be due to oxidative stress and decreased total antioxidant levels. AA may reduce fertility by reducing sperm capacitation and motility. Key words: Acrylamide, Oxidative stress, Antioxidant, Spermatozoa, Infertility.


Sign in / Sign up

Export Citation Format

Share Document