Alterations in neural intermediate filament organization: functional implications and the induction of pathological changes related to motor neuron disease

1996 ◽  
Vol 109 (9) ◽  
pp. 2319-2329 ◽  
Author(s):  
K. Straube-West ◽  
P.A. Loomis ◽  
P. Opal ◽  
R.D. Goldman

The properties regulating the supramolecular organization of neural intermediate filament (NIF) networks have been investigated in cultured dorsal root ganglion (DRG) neurons. The studies described take advantage of the ability of endogenous NIF to incorporate purified biotinylated neurofilament triplet (NFT) proteins, NF-L, NF-M and NF-H. When injected at concentrations of 0.8-1.0 mg/ml injection buffer, each of these proteins is incorporated without perturbing the endogenous NIF network. However, at progressively higher concentrations, NF-H induces the aggregation and accumulation of NIF in the cell body. Subsequent to the induction of these aggregates, numerous alterations in the cytoarchitecture of neurons can be detected. The latter occur in a temporal sequence which appears to begin with the fragmentation of the Golgi complex. At later times, accumulation of mitochondria within the proximal region of neurites, peripheralization of the nucleus, and a significant decrease in neurite caliber become obvious. After longer time periods, the NIF aggregates are seen to react with an antibody which reveals abnormally phosphorylated NF-H. These observations demonstrate that an imbalance in the normal stoichiometric relationships among the NFT proteins rapidly alters the supramolecular organization of the NIF network. These changes most likely reflect the normal functions of neurofilaments in cell shape and the organization and cytoplasmic distribution of membranous organelles. Interestingly, virtually all of these changes closely resemble those which have been reported in motor neuron diseases such as amyotrophic lateral sclerosis (ALS). These findings suggest that cultured neurons can be used as models for more precisely defining the relationships between the formation of NIF aggregates and the sequence of cytopathological events which typify neurodegenerative diseases.

2017 ◽  
pp. 15-32
Author(s):  
Satish V. Khadilkar ◽  
Rakhil S. Yadav ◽  
Bhagyadhan A. Patel

2021 ◽  
pp. 752-759
Author(s):  
Eric J. Sorenson

The motor neuron disorders are a clinically diverse group of diseases that share a pathologic loss of the motor neurons. The most common adult-onset disorder is amyotrophic lateral sclerosis (ALS). Other forms include the spinal muscular atrophies, infectious motor neuronopathies, and rare focal forms of anterior horn cell loss.Overall, the incidence rate of ALS is believed to be 1.5 to 2.0 cases per 100,000 person-years, and the prevalence rate is 4 to 6 cases per 100,000 population. Other than in sparsely populated geographic clusters (eg, Guam and the Kii Peninsula of Japan), the incidence rate seems consistent across ethnic and geographic boundaries.


2020 ◽  
Vol 10 (3) ◽  
pp. 58 ◽  
Author(s):  
Owen Connolly ◽  
Laura Le Gall ◽  
Gavin McCluskey ◽  
Colette G Donaghy ◽  
William J Duddy ◽  
...  

Amyotrophic lateral sclerosis is a rare and fatal neurodegenerative disease characterised by progressive deterioration of upper and lower motor neurons that eventually culminates in severe muscle atrophy, respiratory failure and death. There is a concerning lack of understanding regarding the mechanisms that lead to the onset of ALS and as a result there are no reliable biomarkers that aid in the early detection of the disease nor is there an effective treatment. This review first considers the clinical phenotypes associated with ALS, and discusses the broad categorisation of ALS and ALS-mimic diseases into upper and lower motor neuron diseases, before focusing on the genetic aetiology of ALS and considering the potential relationship of mutations of different genes to variations in phenotype. For this purpose, a systematic review is conducted collating data from 107 original published clinical studies on monogenic forms of the disease, surveying the age and site of onset, disease duration and motor neuron involvement. The collected data highlight the complexity of the disease’s genotype–phenotype relationship, and thus the need for a nuanced approach to the development of clinical assays and therapeutics.


Data in Brief ◽  
2020 ◽  
Vol 29 ◽  
pp. 105229 ◽  
Author(s):  
Peter Bede ◽  
Rangariroyashe H. Chipika ◽  
Eoin Finegan ◽  
Stacey Li Hi Shing ◽  
Kai Ming Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document