Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils

1997 ◽  
Vol 110 (24) ◽  
pp. 3071-3081 ◽  
Author(s):  
A. Grogan ◽  
E. Reeves ◽  
N. Keep ◽  
F. Wientjes ◽  
N.F. Totty ◽  
...  

The NADPH oxidase generates microbicidal superoxide in phagocytes, and when defective it leads to chronic granulomatous disease (CGD). Oxidase specific proteins in the cytosol, p47phox and p67phox, as well as the small GTP binding protein p21rac are important for activation of superoxide production. Because the activity of this oxidase is normally tightly restricted to the phagocytic vacuole, and its temporal and spatial organisation might be regulated by cytoskeletal proteins, we examined the cytosolic phox proteins for interactions with cytoskeletal elements. p67phox copurified with a 57 kDa protein, identified as coronin, an actin binding protein that is important for movement and phagocytosis in Dictyostelium. Binding studies revealed that coronin attaches to the C-terminal half of p40phox, a binding partner of p67phox. The phox proteins and coronin had a similar distribution in the cell, and both accumulated around the phagocytic vacuole. PMA activation of adherent neutrophils resulted in a major rearrangement of these proteins, and of actin, which were lost from the periphery of the cell and condensed around the nucleus. The rearrangement of F-actin and coronin in adherent cells, were absent, or markedly diminished, in cells from patients lacking p47phox or p67phox in which an abnormally large proportion of the coronin was present as part of a large complex. The cytosolic phox proteins might play a regulatory role in the reorganisation of the cytoskeleton accompanying superoxide generation.

1987 ◽  
Author(s):  
A M Aakhus ◽  
N O Solum ◽  
I Hagen

Effects on filamentous proteins appear to be a central phenomenon in the neuronal toxic effects of organic solvents. We have therefore compared the effects of some organic solvents (particularly isopropylalcohol, IPA) to the previously observed effects of dibucaine (DBC) on platelet cytoskeletal proteins. Incubation of platelets with 6% IPA at 37° C, like DBC, initiates a degradation of actin-binding protein (ABP) as substrate for a calcium activated protease (CAP), shown by SDS-PAGE. IPA leads to an increase followed by a decrease in bovine von Willebrand factor-induced agglutination. The decrease is accompanied by a release of glycocali-cin from the GP lb α-chain. The process was also studied using CIE of Triton X-100 extracts of platelets against antiserum to glycocalicin. Incubation of platelets with IPA before extraction in the presence of 4.2 mM leupeptin leads to a time-dependent transformation of GP Ib-related immunoprecipitates from that of the slow-migrating peak III complex (probably between ABP and GP lb) to the faster migrating GP Ib-precipitate. Our working hypothesis is that IPA induces an activation of the CAP by mobilizing calcium. This leads to degradation of ABP and liberation of GP lb from the cytoskeleton accompanied by an increased tendency for agglutination. The following decrease is explained by degradation of the glycocalicin part of the GP lb enchain which contains the binding-site for von Willebrand factor. We conclude that IPA has a similar effect on GP lb and ABP as DBC. Preliminary studies with 1% DMSO and 0,005% toluene at 37° C revealed that these organic solvents have some similar effects on platelets as described for IPA. Possibly the described effects are characteristic of certain cells at an early stage in a process ultimately leading to cell lysis.


1980 ◽  
Vol 86 (1) ◽  
pp. 77-86 ◽  
Author(s):  
D Phillips ◽  
L Jennings ◽  
H Edwards

Membrane glycoproteins that mediate platelet-platelet interactions were investigated by identifying those associated with the cytoskeletal structures from aggregated platelets. The cytoskeletal structures from washed platelets, thrombin-activated platelets (platelets incubated with thrombin in the presence of mM EDTA to prevent aggregation) and thrombin- aggregated platelets (platelets activated in the presence of mM Ca(++) were prepared by first treating platelet suspensions with 1 percent Triton X-100 and 5 mM EGTA and then isolating the insoluble residue by centrifugation. The readily identifiable structures in electron micrographs of the residue from washed platelets had the shape and dimensions of actin filaments. Analysis of this residue from washed platelets had the shape and dimensions of actin filaments. Analysis of this residue by SDS gel electrophoresis showed that it consisted primarily of three proteins: actin (mol wt = 43,000), myosin (mol wt = 200,000) and a high molecular weight polypeptide (mol wt = 255,000) which had properties indentical to actin-binding protein (filamin). When platelets are activated with thrombin in the presence of EDTA to prevent aggregation, there was a marked increase in the amount of insoluble precipitate in the subsequent Triton extraction. Transmission electron microscopy showed that this residue not only contained the random array of actin filaments as seen above, but also organized structures from individual platelets which appeared as balls of electron-dense filamentous material approximately 1mum in diameter. SDS polyacrylamide gel analysis of the Triton residue of activated platelets showed that this preparation contained more actin, myosin and actin-binding protein than that from washed platelets plus polypeptides with mol wt of 56,000 and 90,000 and other minor polypeptides. Thus, thrombin activation appeared to increase polymerization of actin in association with other cytoskeletal proteins into structures that are observable after Triton extraction. The cytoskeletal structures from thrombin-aggregated platelets were similar to those from thrombin-activated platelets, except that the structural elements from individual platelets remained aggregated rather than randomly dispersed in the actin filaments. This suggested that the membrane components that mediate the direct interaction of platelets were in Triton residue from aggregated platelets. Only a small percentage of the membrane surface proteins and glycoproteins were found in the cytoskeletal structures from either washed platelets or thrombin-activated platelets. In contrast, the aggregated cytoskeletal structures from thrombin-aggregated platelets contained membrane glycoproteins IIb (26 percent of the total in pre-extracted platelets) and III (14 percent), suggesting that one or both of these glycoproteins participate in the direct interaction of platelets during aggregation.


Genetics ◽  
1993 ◽  
Vol 135 (2) ◽  
pp. 275-286
Author(s):  
D B Vinh ◽  
M D Welch ◽  
A K Corsi ◽  
K F Wertman ◽  
D G Drubin

Abstract We describe here genetic interactions between mutant alleles of Actin-NonComplementing (ANC) genes and actin (ACT1) or actin-binding protein (SAC6, ABP1, TPM1) genes. The anc mutations were found to exhibit allele-specific noncomplementing interactions with different act1 mutations. In addition, mutant alleles of four ANC genes (ANC1, ANC2, ANC3 and ANC4) were tested for interactions with null alleles of actin-binding protein genes. An anc1 mutant allele failed to complement null alleles of the SAC6 and TPM1 genes that encode yeast fimbrin and tropomyosin, respectively. Also, synthetic lethality between anc3 and sac6 mutations, and between anc4 and tpm1 mutations was observed. Taken together, the above results strongly suggest that the ANC gene products contribute to diverse aspects of actin function. Finally, we report the results of tests of two models previously proposed to explain extragenic noncomplementation.


1987 ◽  
Author(s):  
J M Wilkinson ◽  
N Hack ◽  
L I Thorsen ◽  
J A Thomas

Platelet membrane preparations can be fractionated into two major subpopulations by free flow electrophoresis and these have been shown to correspond to the plasma membrane and the endoplasmic reticulum of the platelet. The plasma membrane fraction can be shown, by two-dimensional electrophoresis, to contain the major surface glycoproteins together with considerable amounts of actin and actin-associated proteins such as the 250 kDa actin-binding protein (filamin), P235 (talin), myosin, α-actinin and tropomyosin (Hack, N. … Crawford, N., Biochem. J. 222, 235 (1984). These cytoskeletal proteins are associated with the cytoplasmic face of the plasma membrane and probably interact with transmembrane glycoproteins. We have raised monoclonal antibodies to the purified plasma membrane preparation in order to investigate the nature of these glycoprotein-cytoskeletal interactions. In two fusion experiments, out of 804 tested, 104 hybrids secreted antibody to the membrane preparation and of these 24 were selected for further study. Initial assays were by ELISA using either the membrane preparation or whole fixed platelets as the target antigen. The specificity of the antibodies was investigated further by immunoblotting of SDS gels of total platelet proteins prepared under reducing and nonreducing conditions, by immunofluorescence, by immunohisto-chemistry and by crossed immunoelectrophoresis. The majority of the antibodies recognise major surface glycoproteins; of these, four bind to glycoprotein Ib under all conditions examined while another seven recognise the glycoprotein IIb/IIIa complex as detected by crossed immunoelectrophoresis. Three antibodies recognise the actin binding protein and these cross-react with the smooth muscle protein filamin in a number of different species. Further characterisation of these antibodies in both structural and functional terms will be presented.We are grateful to the Smith and Nephew Foundation for financial support for these studies


2000 ◽  
Vol 37 (10) ◽  
pp. 603-612 ◽  
Author(s):  
Xiaoqing He ◽  
Yijin Li ◽  
Josephine Schembri-King ◽  
Scott Jakes ◽  
Jun Hayashi

Traffic ◽  
2001 ◽  
Vol 2 (11) ◽  
pp. 851-858 ◽  
Author(s):  
Elizabeth M. Bennett ◽  
Chih-Ying Chen ◽  
Asa E. Y. Engqvist-Goldstein ◽  
David G. Drubin ◽  
Frances M. Brodsky

1992 ◽  
Vol 67 (02) ◽  
pp. 252-257 ◽  
Author(s):  
Anne M Aakhus ◽  
J Michael Wilkinson ◽  
Nils Olav Solum

SummaryActin-binding protein (ABP) is degraded into fragments of 190 and 90 kDa by calpain. A monoclonal antibody (MAb TI10) against the 90 kDa fragment of ABP coprecipitated with the glycoprotein lb (GP lb) peak observed on crossed immunoelectrophoresis of Triton X-100 extracts of platelets prepared without calpain inhibitors. MAb PM6/317 against the 190 kDa fragment was not coprecipitated with the GP lb peak under such conditions. The 90 kDa fragment was adsorbed on protein A agarose from extracts that had been preincubated with antibodies to GP lb. This supports the idea that the GP Ib-ABP interaction resides in the 90 kDa region of ABP. GP lb was sedimented with the Triton-insoluble actin filaments in trace amounts only, and only after high speed centrifugation (100,000 × g, 3 h). Both the 190 kDa and the 90 kDa fragments of ABP were sedimented with the Triton-insoluble actin filaments.


Sign in / Sign up

Export Citation Format

Share Document