Expression and localization of hepatocyte domain-specific plasma membrane proteins in hepatoma × fibroblast hybrids and in hepatoma dedifferentiated variants

1998 ◽  
Vol 111 (22) ◽  
pp. 3437-3450
Author(s):  
V. Bender ◽  
S. Buschlen ◽  
D. Cassio

We have studied two aspects of the plasma membrane of hepatocytes, highly differentiated epithelial cells that exhibit a particular and complex polarity. Using a genetic approach, we have distinguished between the expression/regulation of proteins specific for all three hepatocyte membrane domains and their organization into discrete domains. For this analysis we used a panel of previously isolated cell clones, derived from the differentiated rat hepatoma line H4IIEC3, and that present different expression patterns for liver-specific genes. This panel was composed of (1) differentiated clones, (2) chromosomally reduced hepatoma-fibroblast hybrids characterized by a pleiotropic extinction/reexpression of liver-specific genes and (3) dedifferentiated variant and revertant clones. The expression of 16 hepatocyte membrane polarity markers was studied by western blotting and immunolocalization. Even though cells of differentiated clones express all of these polarity markers, they are not polarized, and are therefore suitable for studying the regulation of plasma membrane protein expression, and for identifying gene products implicated in the establishment of membrane polarity. In hepatoma-fibroblast hybrids the expression of four markers, three apical (dipeptidylpeptidase IV, alkaline phosphodiesterase B10 and polymeric IgA receptor) and one lateral (E-cadherin), is down-regulated in extinguished clones and restored in reexpressing subclones, as previously reported for liver-specific functions. The dipeptidylpeptidase IV mRNA was undetectable or strongly reduced in extinguished hybrids, but expressed at a robust level in some of the reexpressing clones. Concerning the dedifferentiated variants, each has its own pattern of membrane marker expression (loss of expression of three to six markers), that differs from that of extinguished hybrids. Revertant cells express all of the membrane markers examined. Among all of these hepatoma derivatives, only cells of reexpressing hybrids are polarized, and form bile canaliculi-like structures, with spherical and even, for one clone, long tubular and branched forms. All apical markers examined are confined in these canalicular structures, whereas the other markers are excluded from them, and present on the rest of the membrane (basolateral markers) or at the cell-cell contacts (lateral markers). Cells of reexpressing hybrids also express simple epithelial polarity. Thus the expression of only a few hepatocyte-domain-specific plasma membrane proteins is subject to down-regulation, as is the case for liver-specific genes so far studied, and the expression of polarity markers and the formation of poles are dissociable events.

1985 ◽  
Vol 100 (4) ◽  
pp. 1115-1125 ◽  
Author(s):  
A L Hubbard ◽  
J R Bartles ◽  
L T Braiterman

We have localized and identified five rat hepatocyte plasma membrane proteins using hybridoma technology in combination with morphological and biochemical methods. Three different membrane preparations were used as immunogens: isolated hepatocytes, a preparation of plasma membrane sheets that contained all three recognizable surface domains of the intact hepatocyte (sinusoidal, lateral, and bile canalicular), and a glycoprotein subfraction of that plasma membrane preparation. We selected monoclonal IgGs that were hepatocyte specific and localized them using both immunofluorescence on 0.5-micron sections of frozen liver and immunoperoxidase at the ultrastructural level. One antigen (HA 4) was localized predominantly to the bile canalicular surface, whereas three (CE 9, HA 21, and HA 116) were localized predominantly to the lateral and sinusoidal surfaces. One antigen (HA 16) was present in all three domains. Only one antigen (HA 116) could be detected in intracellular structures both in the periphery of the cell and in the Golgi region. The antigens were all integral membrane proteins as judged by their stability to alkaline extraction and solubility in detergents. The apparent molecular weights of the antigens were established by immunoprecipitation and/or immunoblotting. In a related study (Bartles, J.R., L.T. Braiterman, and A.L. Hubbard, 1985, J. Cell. Biol., 100:1126-1138), we present biochemical confirmation of the domain-specific localizations for two of the antigens, HA 4 and CE 9, and demonstrate their suitability as endogenous domain markers for monitoring the separation of bile canalicular and sinusoidal lateral membrane on sucrose density gradients.


1991 ◽  
Vol 98 (1) ◽  
pp. 45-54
Author(s):  
J.R. Bartles ◽  
M.S. Rao ◽  
L.Q. Zhang ◽  
B.E. Fayos ◽  
C.L. Nehme ◽  
...  

A combination of Western blotting, Northern blotting and immunofluorescence was used to examine the expression and compartmentalization of plasma membrane proteins by those hepatocyte-like cells that arise in the pancreases of rats subjected to sequential dietary copper depletion and repletion. The pancreatic hepatocytes were found to: (1) express several integral membrane proteins known to be concentrated within the apical, lateral or basolateral domains of the plasma membranes of hepatocytes in liver; and (2) compartmentalize the membrane proteins to equivalent plasma membrane domains, despite the organization of these cells into clusters instead of highly vascularized plates. The apical plasma membrane proteins dipeptidylpeptidase IV and HA 4 were found to line bile canaliculus-like openings between adjacent pancreatic hepatocytes; these openings were shown to be continuous with the pancreatic exocrine duct by India ink infusion. In contrast, the basolateral plasma membrane protein rat hepatic lectin-1 and lateral plasma membrane protein HA 321 were detected elsewhere about the surfaces of the pancreatic hepatocytes: by analogy to their respective localizations on hepatocytes in liver, rat hepatic lectin-1 was concentrated on those surfaces exposed to the pancreatic matrix at the periphery of the hepatocyte clusters (the basal surface equivalent), whereas HA 321 was concentrated on those surfaces exposed to adjacent hepatocytes within the clusters. The hepatocyte plasma membrane proteins were found to be expressed in the pancreas at different times during the copper depletion/repletion protocol: for example, rat hepatic lectin-1 and the bulk of the HA 4 were expressed relatively late in the protocol, only after large numbers of pancreatic hepatocytes had appeared; whereas dipeptidylpeptidase IV was induced greater than 10-fold early in the protocol and proved to be an apical-specific marker for those ductular epithelial cells that are believed to be the progenitors of the pancreatic hepatocytes.


2009 ◽  
Vol 18 (6) ◽  
pp. 527-535 ◽  
Author(s):  
Andreas Lange ◽  
Claudia Kistler ◽  
Tanja B. Jutzi ◽  
Alexandr V. Bazhin ◽  
Claus Detlev Klemke ◽  
...  

2011 ◽  
Vol 286 (12) ◽  
pp. 10058-10065 ◽  
Author(s):  
Chunjuan Huang ◽  
Amy Chang

The vacuolar proton-translocating ATPase (V-ATPase) plays a major role in organelle acidification and works together with other ion transporters to maintain pH homeostasis in eukaryotic cells. We analyzed a requirement for V-ATPase activity in protein trafficking in the yeast secretory pathway. Deficiency of V-ATPase activity caused by subunit deletion or glucose deprivation results in missorting of newly synthesized plasma membrane proteins Pma1 and Can1 directly from the Golgi to the vacuole. Vacuolar mislocalization of Pma1 is dependent on Gga adaptors although no Pma1 ubiquitination was detected. Proper cell surface targeting of Pma1 was rescued in V-ATPase-deficient cells by increasing the pH of the medium, suggesting that missorting is the result of aberrant cytosolic pH. In addition to mislocalization of the plasma membrane proteins, Golgi membrane proteins Kex2 and Vrg4 are also missorted to the vacuole upon loss of V-ATPase activity. Because the missorted cargos have distinct trafficking routes, we suggest a pH dependence for multiple cargo sorting events at the Golgi.


1997 ◽  
Vol 1324 (2) ◽  
pp. 320-332 ◽  
Author(s):  
Bruce I Meiklejohn ◽  
Noorulhuda A Rahman ◽  
Deborah A Roess ◽  
B.George Barisas

Sign in / Sign up

Export Citation Format

Share Document