copper depletion
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 10)

H-INDEX

19
(FIVE YEARS 2)

Inorganics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Soghra Bagheri ◽  
Ali A. Saboury ◽  
Thomas Haertlé ◽  
Mauro Rongioletti ◽  
Luciano Saso

Alzheimer’s disease is a progressive neurodegenerative disorder that eventually leads the affected patients to die. The appearance of senile plaques in the brains of Alzheimer’s patients is known as a main symptom of this disease. The plaques consist of different components, and according to numerous reports, their main components include beta-amyloid peptide and transition metals such as copper. In this disease, metal dyshomeostasis leads the number of copper ions to simultaneously increase in the plaques and decrease in neurons. Copper ions are essential for proper brain functioning, and one of the possible mechanisms of neuronal death in Alzheimer’s disease is the copper depletion of neurons. However, the reason for the copper depletion is as yet unknown. Based on the available evidence, we suggest two possible reasons: the first is copper released from neurons (along with beta-amyloid peptides), which is deposited outside the neurons, and the second is the uptake of copper ions by activated microglia.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Divya Ramchandani ◽  
Mirela Berisa ◽  
Diamile A. Tavarez ◽  
Zhuoning Li ◽  
Matthew Miele ◽  
...  

AbstractCopper serves as a co-factor for a host of metalloenzymes that contribute to malignant progression. The orally bioavailable copper chelating agent tetrathiomolybdate (TM) has been associated with a significant survival benefit in high-risk triple negative breast cancer (TNBC) patients. Despite these promising data, the mechanisms by which copper depletion impacts metastasis are poorly understood and this remains a major barrier to advancing TM to a randomized phase II trial. Here, using two independent TNBC models, we report a discrete subpopulation of highly metastatic SOX2/OCT4+ cells within primary tumors that exhibit elevated intracellular copper levels and a marked sensitivity to TM. Global proteomic and metabolomic profiling identifies TM-mediated inactivation of Complex IV as the primary metabolic defect in the SOX2/OCT4+ cell population. We also identify AMPK/mTORC1 energy sensor as an important downstream pathway and show that AMPK inhibition rescues TM-mediated loss of invasion. Furthermore, loss of the mitochondria-specific copper chaperone, COX17, restricts copper deficiency to mitochondria and phenocopies TM-mediated alterations. These findings identify a copper-metabolism-metastasis axis with potential to enrich patient populations in next-generation therapeutic trials.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ying L. Liu ◽  
Cecilie Liv Bager ◽  
Nicholas Willumsen ◽  
Divya Ramchandani ◽  
Naomi Kornhauser ◽  
...  

AbstractTetrathiomolybdate (TM) is a novel, copper-depleting compound associated with promising survival in a phase II study of patients with high-risk and triple-negative breast cancer. We sought to elucidate the mechanism of TM by exploring its effects on collagen processing and immune function in the tumor microenvironment (TME). Using an exploratory cohort, we identified markers of collagen processing (LOXL2, PRO-C3, C6M, and C1M) that differed between those with breast cancer versus controls. We measured these collagen biomarkers in TM-treated patients on the phase II study and detected evidence of decreased collagen cross-linking and increased degradation over formation in those without disease compared to those who experienced disease progression. Preclinical studies revealed decreased collagen deposition, lower levels of myeloid-derived suppressor cells, and higher CD4+ T-cell infiltration in TM-treated mice compared with controls. This study reveals novel mechanisms of TM targeting the TME and immune response with potential applications across cancer types.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 338
Author(s):  
Jennifer K. Lee ◽  
Jung-Heun Ha ◽  
James F. Collins

Physiologically relevant iron-copper interactions have been frequently documented. For example, excess enteral iron inhibits copper absorption in laboratory rodents and humans. Whether this also occurs during pregnancy and lactation, when iron supplementation is frequently recommended, is, however, unknown. Here, the hypothesis that high dietary iron will perturb copper homeostasis in pregnant and lactating dams and their pups was tested. We utilized a rat model of iron-deficiency/iron supplementation during pregnancy and lactation to assess this possibility. Rat dams were fed low-iron diets early in pregnancy, and then switched to one of 5 diets with normal (1×) to high iron (20×) until pups were 14 days old. Subsequently, copper and iron homeostasis, and intestinal copper absorption (by oral, intragastric gavage with 64Cu), were assessed. Copper depletion/deficiency occurred in the dams and pups as dietary iron increased, as evidenced by decrements in plasma ceruloplasmin (Cp) and superoxide dismutase 1 (SOD1) activity, depletion of hepatic copper, and liver iron loading. Intestinal copper transport and tissue 64Cu accumulation were lower in dams consuming excess iron, and tissue 64Cu was also low in suckling pups. In some cases, physiological disturbances were noted when dietary iron was only ~3-fold in excess, while for others, effects were observed when dietary iron was 10–20-fold in excess. Excess enteral iron thus antagonizes the absorption of dietary copper, causing copper depletion in dams and their suckling pups. Low milk copper is a likely explanation for copper depletion in the pups, but experimental proof of this awaits future experimentation.


Author(s):  
Liyang Cui ◽  
Arvin M. Gouw ◽  
Edward L. LaGory ◽  
Shenghao Guo ◽  
Nabeel Attarwala ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 1052 ◽  
Author(s):  
Dimitrios Hariskos ◽  
Wolfram Hempel ◽  
Richard Menner ◽  
Wolfram Witte

Indium sulfide (InxSy)—besides CdS and Zn(O,S)—is already used as a buffer layer in chalcopyrite-type thin-film solar cells and modules. We discuss the influence of the substrate temperature during very fast magnetron sputtering of InxSy buffer layers on the interface formation and the performance of Cu(In,Ga)Se2 solar cells. The substrate temperature was increased from room temperature up to 240 °C, and the highest power conversion efficiencies were obtained at a temperature plateau around 200 °C, with the best values around 15.3%. Industrially relevant in-line co-evaporated polycrystalline Cu(In,Ga)Se2 absorber layers were used, which yield solar cell efficiencies of up to 17.1% in combination with a solution-grown CdS buffer. The chemical composition of the InxSy buffer as well as of the Cu(In,Ga)Se2/InxSy interface was analyzed by time-of-flight secondary ion mass spectrometry. Changes from homogenous and stoichiometric In2S3 layers deposited at RT to inhomogenous and more sulfur-rich and indium-deficient compositions for higher temperatures were observed. This finding is accompanied with a pronounced copper depletion at the Cu(In,Ga)Se2 absorber surface, and a sodium accumulation in the InxSy buffer and at the absorber/buffer interface. These last two features seem to be the origin for achieving the highest conversion efficiencies at substrate temperatures around 200 °C.


Sign in / Sign up

Export Citation Format

Share Document