The novel murine calmodulin-binding protein Sha1 disrupts mitotic spindle and replication checkpoint functions in fission yeast

1998 ◽  
Vol 111 (24) ◽  
pp. 3609-3619
Author(s):  
R. Craig ◽  
C. Norbury

Entry into mitosis is normally blocked in eukaryotic cells that have not completed replicative DNA synthesis; this ‘S-M’ checkpoint control is fundamental to the maintenance of genomic integrity. Mutants of the fission yeast Schizosaccharomyces pombe defective in the S-M checkpoint fail to arrest the cell cycle when DNA replication is inhibited and hence attempt mitosis and cell division with unreplicated chromosomes, resulting in the ‘cut’ phenotype. In an attempt to identify conserved molecules involved in the S-M checkpoint we have screened a regulatable murine cDNA library in S. pombe and have identified cDNAs that induce the cut phenotype in cells arrested in S phase by hydroxyurea. One such cDNA encodes a novel protein with multiple calmodulin-binding motifs that, in addition to its effects on the S-M checkpoint, perturbed mitotic spindle functions, although spindle pole duplication was apparently normal. Both aspects of the phenotype induced by this cDNA product, which we term Sha1 (for spindle and hydroxyurea checkpoint abnormal), were suppressed by simultaneous overexpression of calmodulin. Sha1 is structurally related to the product of the Drosophila gene abnormal spindle (asp). These data suggest that calmodulin-binding protein(s) are important in the co-ordination of mitotic spindle functions with mitotic entry in fission yeast, and probably also in multicellular eukaryotes.

2004 ◽  
Vol 279 (45) ◽  
pp. 47372-47378 ◽  
Author(s):  
Izumi Sugimoto ◽  
Hiroshi Murakami ◽  
Yuko Tonami ◽  
Akihiko Moriyama ◽  
Makoto Nakanishi

2016 ◽  
Vol 27 (11) ◽  
pp. 1753-1763 ◽  
Author(s):  
Hirohisa Masuda ◽  
Takashi Toda

In fission yeast, γ-tubulin ring complex (γTuRC)–specific components Gfh1GCP4, Mod21GCP5, and Alp16GCP6 are nonessential for cell growth. Of these deletion mutants, only alp16Δ shows synthetic lethality with temperature-sensitive mutants of Mzt1MOZART1, a component of the γTuRC required for recruitment of the complex to microtubule-organizing centers. γ-Tubulin small complex levels at mitotic spindle pole bodies (SPBs, the centrosome equivalent in fungi) and microtubule levels for preanaphase spindles are significantly reduced in alp16Δ cells but not in gfh1Δ or mod21Δ cells. Furthermore, alp16Δ cells often form monopolar spindles and frequently lose a minichromosome when the spindle assembly checkpoint is inactivated. Alp16GCP6 promotes Mzt1-dependent γTuRC recruitment to mitotic SPBs and enhances spindle microtubule assembly in a manner dependent on its expression levels. Gfh1GCP4 and Mod21GCP5 are not required for Alp16GCP6-dependent γTuRC recruitment. Mzt1 has an additional role in the activation of the γTuRC for spindle microtubule assembly. The ratio of Mzt1 to γTuRC levels for preanaphase spindles is higher than at other stages of the cell cycle. Mzt1 overproduction enhances spindle microtubule assembly without affecting γTuRC levels at mitotic SPBs. We propose that Alp16GCP6 and Mzt1 act synergistically for efficient bipolar spindle assembly to ensure faithful chromosome segregation.


FEBS Letters ◽  
2014 ◽  
Vol 588 (17) ◽  
pp. 2814-2821 ◽  
Author(s):  
Ngang Heok Tang ◽  
Naoyuki Okada ◽  
Chii Shyang Fong ◽  
Kunio Arai ◽  
Masamitsu Sato ◽  
...  

2014 ◽  
Vol 25 (18) ◽  
pp. 2735-2749 ◽  
Author(s):  
I-Ju Lee ◽  
Ning Wang ◽  
Wen Hu ◽  
Kersey Schott ◽  
Jürg Bähler ◽  
...  

Centrosomes play critical roles in the cell division cycle and ciliogenesis. Sfi1 is a centrin-binding protein conserved from yeast to humans. Budding yeast Sfi1 is essential for the initiation of spindle pole body (SPB; yeast centrosome) duplication. However, the recruitment and partitioning of Sfi1 to centrosomal structures have never been fully investigated in any organism, and the presumed importance of the conserved tryptophans in the internal repeats of Sfi1 remains untested. Here we report that in fission yeast, instead of doubling abruptly at the initiation of SPB duplication and remaining at a constant level thereafter, Sfi1 is gradually recruited to SPBs throughout the cell cycle. Like an sfi1Δ mutant, a Trp-to-Arg mutant (sfi1-M46) forms monopolar spindles and exhibits mitosis and cytokinesis defects. Sfi1-M46 protein associates preferentially with one of the two daughter SPBs during mitosis, resulting in a failure of new SPB assembly in the SPB receiving insufficient Sfi1. Although all five conserved tryptophans tested are involved in Sfi1 partitioning, the importance of the individual repeats in Sfi1 differs. In summary, our results reveal a link between the conserved tryptophans and Sfi1 partitioning and suggest a revision of the model for SPB assembly.


1986 ◽  
Vol 103 (5) ◽  
pp. 1855-1861 ◽  
Author(s):  
R C Brady ◽  
F Cabral ◽  
J R Dedman

A pool of 10 calmodulin-binding proteins (CBPs) was isolated from Chinese hamster ovary (CHO) cells via calmodulin (CaM)-Sepharose affinity chromatography. One of these ten isolated CBPs with a molecular mass of 52 kD was also found to be present in isolated CHO cell mitotic spindles. Affinity-purified antibodies generated against this pool of isolated CBPs recognize a single 52-kD protein in isolated CHO cell mitotic spindles by immunoblot analysis. Immunofluorescence examination of CHO, 3T3, NRK, PTK-2, and HeLa cells resulted in a distinct pattern of mitotic spindle fluorescence. The localization pattern of this 52-kD CBP directly parallels that of CaM in the spindle apparatus throughout the various stages of mitosis. Interestingly, there was no association of this 52-kD CBP with cytoplasmic microtubules. As is the case with CaM, the localization pattern of the 52-kD CBP in interphase cells is diffuse within the cytoplasm and is not associated with any discrete, cellular structures. This 52-kD CBP appears to represent the first mitotic spindle-specific calmodulin-binding protein identified and represents an initial step toward the ultimate determination of CaM function in the mitotic spindle apparatus.


1999 ◽  
Vol 112 (6) ◽  
pp. 927-937 ◽  
Author(s):  
S.W. Wang ◽  
C. Norbury ◽  
A.L. Harris ◽  
T. Toda

The replication checkpoint (or ‘S-M checkpoint’) control prevents progression into mitosis when DNA replication is incomplete. Caffeine has been known for some time to have the capacity to override the S-M checkpoint in animal cells. We show here that caffeine also disrupts the S-M checkpoint in the fission yeast Schizosaccharomyces pombe. By contrast, no comparable effects of caffeine on the S. pombe DNA damage checkpoint were seen. S. pombe cells arrested in early S phase and then exposed to caffeine lost viability rapidly as they attempted to enter mitosis, which was accompanied by tyrosine dephosphorylation of Cdc2. Despite this, the caffeine-induced loss of viability was not blocked in a temperature-sensitive cdc2 mutant incubated at the restrictive temperature, although catastrophic mitosis was prevented under these conditions. This suggests that, in addition to S-M checkpoint control, a caffeine-sensitive function may be important for maintenance of cell viability during S phase arrest. The lethality of a combination of caffeine with the DNA replication inhibitor hydroxyurea was suppressed by overexpression of Cds1 or Chk1, protein kinases previously implicated in S-M checkpoint control and recovery from S phase arrest. In addition, the same combination of drugs was specifically tolerated in cells overexpressing either of two novel S. pombe genes isolated in a cDNA library screen. These findings should allow further molecular investigation of the regulation of S phase arrest, and may provide a useful system with which to identify novel drugs that specifically abrogate the checkpoint control.


1997 ◽  
Vol 11 (24) ◽  
pp. 3387-3400 ◽  
Author(s):  
Y. Saka ◽  
F. Esashi ◽  
T. Matsusaka ◽  
S. Mochida ◽  
M. Yanagida

2003 ◽  
Vol 14 (7) ◽  
pp. 2793-2808 ◽  
Author(s):  
Anne Paoletti ◽  
Nicole Bordes ◽  
Raphaël Haddad ◽  
Cindi L. Schwartz ◽  
Fred Chang ◽  
...  

The fission yeast spindle pole body (SPB) is a nucleus-associated organelle that duplicates once each cell cycle during interphase. Duplicated SPBs serve as the poles of an intranuclear mitotic spindle after their insertion into the nuclear envelope in mitosis (Ding et al., Mol. Biol. Cell 8, 1461–1479). Here, we report the identification and characterization of Schizosaccharomyces pombe cdc31p, a member of the conserved calcium-binding centrin/CDC31 family. Immunofluorescence and immunoelectron microscopy show that cdc31p is a SPB component localized at the half-bridge structure of the SPB. cdc31 is an essential gene and Δcdc31 cells and cdc31 conditional mutant cells arrest in mitosis with a monopolar mitotic spindle organized from a single SPB. EM analysis demonstrates that mutant cdc31 cells fail to duplicate the SPB. In addition, cdc31p exhibits genetic interactions with the SPB component sad1p and is required for sad1p localization. Finally, cdc31 mutant can undergo single or multiple rounds of septation before the exit from mitosis, suggesting that cdc31p activity or SPB duplication may be required for the proper coordination between the exit from mitosis and the initiation of septation.


Sign in / Sign up

Export Citation Format

Share Document