Effects of anti-fibrillarin antibodies on building of functional nucleoli at the end of mitosis

1998 ◽  
Vol 111 (3) ◽  
pp. 359-372 ◽  
Author(s):  
N. Fomproix ◽  
J. Gebrane-Younes ◽  
D. Hernandez-Verdun

During mitosis some nuclear complexes are relocalized at the chromosome periphery and are then reintegrated into the re-forming nuclei in late telophase. To address questions concerning translocation from the chromosome periphery to nuclei, the dynamics of one nucleolar perichromosomal protein which is involved in the ribosomal RNA processing machinery, fibrillarin, was followed. In the same cells, the onset of the RNA polymerase I (RNA pol I) activity and translocation of fibrillarin were simultaneously investigated. In PtK1 cells, RNA pol I transcription was first detected at anaphase B. At the same mitotic stage, fibrillarin formed foci of increasing size around the chromosomes, these foci then gathered into prenucleolar bodies (PNBs) and later PNBs were targeted into the newly formed nucleoli. Electron microscopy studies enabled the visualization of the PNBs forming the dense fibrillar component (DFC) of new nucleoli. Anti-fibrillarin antibodies microinjected at different periods of mitosis blocked fibrillarin translocation at different steps, i.e. the formation of large foci, foci gathering in PNBs or PNB targeting into nucleoli, and thereby modified the ultrastructural organization of the nucleoli as well as of the PNBs. In addition, antibody-bound fibrillarin seemed localized with blocks of condensed chromatin in early G1 nuclei. It has been found that blocking fibrillarin translocation reduced or inhibited RNA pol I transcription. It is postulated that when translocation of proteins belonging to the processing machinery is inhibited or diminished, a negative feed-back effect is induced on nucleolar reassembly and transcriptional activity.

1997 ◽  
Vol 110 (7) ◽  
pp. 829-837
Author(s):  
M.R. Jacobson ◽  
L.G. Cao ◽  
K. Taneja ◽  
R.H. Singer ◽  
Y.L. Wang ◽  
...  

The ribonucleoprotein enzyme RNase P catalyzes the 5′ processing of pre-transfer RNA, and has also recently been implicated in pre-ribosomal RNA processing. In the present investigation, in situ hybridization revealed that RNase P RNA is present throughout the nucleus of mammalian cells. However, rhodamine-labeled human RNase P RNA microinjected into the nucleus of rat kidney (NRK) epithelial cells or human (HeLa) cells initially localized in nucleoli, and subsequently became more evenly distributed throughout the nucleus, similar to the steadystate distribution of endogenous RNase P RNA. Parallel microinjection and immunocytochemical experiments revealed that initially nucleus-microinjected RNase P RNA localized specifically in the dense fibrillar component of the nucleolus, the site of pre-rRNA processing. A mutant RNase P RNA lacking the To antigen binding domain (nucleotides 25–75) did not localize in nucleoli after nuclear microinjection. In contrast, a truncated RNase P RNA containing the To binding domain but lacking nucleotides 89–341 became rapidly localized in nucleoli following nuclear microinjection. However, unlike the full-length RNase P RNA, this 3′ truncated RNA remained stably associated with the nucleoli and did not translocate to the nucleoplasm. These results suggest a nucleolar phase in the maturation, ribonucleoprotein assembly or function of RNase P RNA, mediated at least in part by the nucleolar To antigen. These and other recent findings raise the intriguing possibility of a bifunctional role of RNase P in the nucleus: catalyzing pre-ribosomal RNA processing in the nucleolus and pre-transfer RNA processing in the nucleoplasm.


Science ◽  
2021 ◽  
Vol 373 (6554) ◽  
pp. 547-555
Author(s):  
Man Wu ◽  
Guang Xu ◽  
Chong Han ◽  
Peng-Fei Luan ◽  
Yu-Hang Xing ◽  
...  

RNA polymerase I (Pol I) transcription takes place at the border of the fibrillar center (FC) and the dense fibrillar component (DFC) in the nucleolus. Here, we report that individual spherical FC/DFC units are coated by the DEAD-box RNA helicase DDX21 in human cells. The long noncoding RNA (lncRNA) SLERT binds to DDX21 RecA domains to promote DDX21 to adopt a closed conformation at a substoichiometric ratio through a molecular chaperone–like mechanism resulting in the formation of hypomultimerized and loose DDX21 clusters that coat DFCs, which is required for proper FC/DFC liquidity and Pol I processivity. Our results suggest that SLERT is an RNA regulator that controls the biophysical properties of FC/DFCs and thus ribosomal RNA production.


1995 ◽  
Vol 128 (1) ◽  
pp. 15-27 ◽  
Author(s):  
M A Garcia-Blanco ◽  
D D Miller ◽  
M P Sheetz

Visualization of nuclear architecture is key to the understanding of the association between RNA synthesis and processing. This architecture is obscured by the high density of components in most nuclei. We have developed a method of spreading nuclei and nucleoli that reduces overlap of weakly associated components. Strong interactions among nuclear components are not disrupted by this method. Spread nucleoli remained structurally distinct and functionally competent in ribosomal RNA synthesis. Nascent ribosomal RNA colocalized with RNA polymerase I and fibrillarin, a protein required for processing of ribosomal RNA. Colocalization of nascent transcripts and fibrillarin was seen in nucleoli spread over several microns, suggesting a strong interaction. These data suggest that nucleoli are superassemblies of bipartite domains, each composed of a ribosomal RNA synthesis center tightly associated with areas likely to be involved in ribosomal RNA processing.


1989 ◽  
Vol 138 (1) ◽  
pp. 205-207 ◽  
Author(s):  
Susan H. Lawler ◽  
Robert W. Jones ◽  
Brian P. Eliceiri ◽  
George L. Eliceiri

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 317-326
Author(s):  
M. Caizergues-Ferrer ◽  
C. Mathieu ◽  
P. Mariottini ◽  
F. Amalric ◽  
F. Amaldi

Fibrillarin is one of the protein components that together with U3 snRNA constitute the U3 snRNP, a small nuclear ribonucleoprotein particle involved in ribosomal RNA processing in eucaryotic cells. Using an antifibrillarin antiserum for protein detection and a fibrillarin cDNA and a synthetic oligonucleotide complementary to U3 snRNA as hybridization probes, the expression of these two components has been studied during Xenopus development. Fibrillarin mRNA is accumulated early in oogenesis, like many other messengers, and translated during oocyte growth. Fibrillarin protein is thus progressively accumulated throughout oogenesis to be assembled with U3 snRNA and used for ribosome production in the amplified nucleoli. After fertilization, the amount of U3 snRNA decreases while the maternally accumulated fibrillarin mRNA is maintained and utilized to produce more protein. After the mid-blastula transition, stored fibrillarin is assembled with newly synthesized U3 snRNA and becomes localized in the prenucleolar bodies and reforming nucleoli.


2015 ◽  
Vol 43 (9) ◽  
pp. S78
Author(s):  
Hirotaka Matsui ◽  
Akinori Kanai ◽  
Akiko Nagamachi ◽  
Moe Okuno ◽  
Toshiya Inaba

1995 ◽  
Vol 9 (20) ◽  
pp. 2470-2481 ◽  
Author(s):  
D Lafontaine ◽  
J Vandenhaute ◽  
D Tollervey

Sign in / Sign up

Export Citation Format

Share Document