Myosin II-independent F-actin flow contributes to cell locomotion in dictyostelium

1999 ◽  
Vol 112 (6) ◽  
pp. 877-886 ◽  
Author(s):  
Y. Fukui ◽  
T. Kitanishi-Yumura ◽  
S. Yumura

While the treadmilling and retrograde flow of F-actin are believed to be responsible for the protrusion of leading edges, little is known about the mechanism that brings the posterior cell body forward. To elucidate the mechanism for global cell locomotion, we examined the organizational changes of filamentous (F-) actin in live Dictyostelium discoideum. We labeled F-actin with a trace amount of fluorescent phalloidin and analyzed its dynamics in nearly two-dimensional cells by using a sensitive, high-resolution charge-coupled device. We optically resolved a cyclic mode of tightening and loosening of fibrous cortical F-actin and quantitated its flow by measuring temporal and spatial intensity changes. The rate of F-actin flow was evaluated with respect to migration velocity and morphometric changes. In migrating monopodial cells, the cortical F-actin encircling the posterior cell body gradually accumulated into the tail end at a speed of 0.35 microm/minute. We show qualitatively and quantitatively that the F-actin flow is closely associated with cell migration. Similarly, in dividing cells, the cortical F-actin accumulated into the cleavage furrow. Although five times slower than the wild type, the F-actin also flows rearward in migrating mhcA- cells demonstrating that myosin II (‘conventional’ myosin) is not absolutely required for the observed dynamics of F-actin. Yet consistent with the reported transportation of ConA-beads, the direction of observed F-actin flow in Dictyostelium is conceptually opposite from a barbed-end binding to the plasma membrane. This study suggests that the posterior end of the cell has a unique motif that tugs the cortical actin layer rearward by means of a mechanism independent from myosin II; this mechanism may be also involved in cleavage furrow formation.

2012 ◽  
Vol 23 (8) ◽  
pp. 1510-1523 ◽  
Author(s):  
Yee-Seir Kee ◽  
Yixin Ren ◽  
Danielle Dorfman ◽  
Miho Iijima ◽  
Richard Firtel ◽  
...  

The mitotic spindle is generally considered the initiator of furrow ingression. However, recent studies suggest that furrows can form without spindles, particularly during asymmetric cell division. In Dictyostelium, the mechanoenzyme myosin II and the actin cross-linker cortexillin I form a mechanosensor that responds to mechanical stress, which could account for spindle-independent contractile protein recruitment. Here we show that the regulatory and contractility network composed of myosin II, cortexillin I, IQGAP2, kinesin-6 (kif12), and inner centromeric protein (INCENP) is a mechanical stress–responsive system. Myosin II and cortexillin I form the core mechanosensor, and mechanotransduction is mediated by IQGAP2 to kif12 and INCENP. In addition, IQGAP2 is antagonized by IQGAP1 to modulate the mechanoresponsiveness of the system, suggesting a possible mechanism for discriminating between mechanical and biochemical inputs. Furthermore, IQGAP2 is important for maintaining spindle morphology and kif12 and myosin II cleavage furrow recruitment. Cortexillin II is not directly involved in myosin II mechanosensitive accumulation, but without cortexillin I, cortexillin II's role in membrane–cortex attachment is revealed. Finally, the mitotic spindle is dispensable for the system. Overall, this mechanosensory system is structured like a control system characterized by mechanochemical feedback loops that regulate myosin II localization at sites of mechanical stress and the cleavage furrow.


2001 ◽  
Vol 114 (18) ◽  
pp. 3273-3284 ◽  
Author(s):  
Masatoshi Eda ◽  
Shigenobu Yonemura ◽  
Takayuki Kato ◽  
Naoki Watanabe ◽  
Toshimasa Ishizaki ◽  
...  

Citron-kinase (Citron-K) is a Rho effector working in cytokinesis. It is enriched in cleavage furrow, but how Rho mobilizes Citron-K remains unknown. Using anti-Citron antibody and a Citron-K Green Fluorescence Protein (GFP)-fusion, we monitored its localization in cell cycle. We have found: (1) Citron-K is present as aggregates in interphase cells, disperses throughout the cytoplasm in prometaphase, translocates to cell cortex in anaphase and accumulates in cleavage furrow in telophase; (2) Rho colocalizes with Citron-K in the cortex of ana- to telophase cells and the two proteins are concentrated in the cleavage furrow and to the midbody; (3) inactivation of Rho by C3 exoenzyme does not affect the dispersion of Citron-K in prometaphase, but prevented its transfer to the cell cortex, and Citron-K stays in association with the midzone spindles of C3 exoenzyme-treated cells. To clarify further the mechanism of the Rho-mediated transfer and concentration of Citron-K in cleavage furrow, we expressed active Val14RhoA in interphase cells expressing GFP-Citron-K. Val14RhoA expression transferred Citron-K to the ventral cortex of interphase cells, where it formed band-like structures in a complex with Rho. This structure was localized at the same plane as actin stress fibers, and they exclude each other. Disruption of F-actin abolished the band and dispersed the Citron-K-Rho-containing patches throughout the cell cortex. Similarly, in dividing cells, a structure composed of Rho and Citron-K in cleavage furrow excludes cortical actin cytoskeleton, and disruption of F-actin disperses Citron-K throughout the cell cortex. These results suggest that Citron-K is a novel type of a passenger protein, which is dispersed to the cytoplasm in prometaphase and associated with midzone spindles by a Rho-independent signal. Rho is then activated, binds to Citron-K and translocates it to cell cortex, where the complex is then concentrated in the cleavage furrow by the action of actin cytoskeleton beneath the equator of dividing cells.


1996 ◽  
Vol 7 (8) ◽  
pp. 1259-1282 ◽  
Author(s):  
R L DeBiasio ◽  
G M LaRocca ◽  
P L Post ◽  
D L Taylor

The mechanism of cytokinesis has been difficult to define because of the short duration and the temporal-spatial dynamics involved in the formation, activation, force production, and disappearance of the cleavage furrow. We have investigated the structural and chemical dynamics of myosin II in living Swiss 3T3 cells from prometaphase through the separation and migration of daughter cells. The structural and chemical dynamics of myosin II have been defined using the semiautomated, multimode light microscope, together with a fluorescent analogue of myosin II and a fluorescent biosensor of myosin II regulatory light chain (RLC) phosphorylation at serine 19. The correlation of image data from live cells using different modes of light microscopy allowed interpretations not possible from single-mode investigations. Myosin II transported toward the equatorial plane from adjacent regions, forming three-dimensional fibers that spanned the volume of the equator during anaphase and telophase. A global phosphorylation of myosin II at serine 19 of the RLC was initiated at anaphase when cortical myosin II transport started. The phosphorylation of myosin II remained high near the equatorial plane through telophase and into cytokinesis, whereas the phosphorylation of myosin II at serine 19 of the RLC decreased at the poles. The timing and pattern of phosphorylation was the same as the shortening of myosin II-based fibers in the cleavage furrow. Myosin II-based fibers shortened and transported out of the cleavage furrow into the tails of the two daughter cells late in cytokinesis. The patterns of myosin II transport, phosphorylation, and shortening of fibers in the migrating daughter cells were similar to that previously defined for cells migrating in a wound in vitro. The temporal-spatial patterns and dynamics of myosin II transport, phosphorylation at serine 19 of the RLC, and the shortening and disappearance of myosin II-based fibers support the proposal that a combination of the cortical flow hypothesis and the solation-contraction coupling hypothesis explain key aspects of cytokinesis and polarized cell locomotion.


2008 ◽  
Vol 36 (3) ◽  
pp. 391-394 ◽  
Author(s):  
Glenn C. Simon ◽  
Rytis Prekeris

Recently, recycling endosomes have emerged as a key components required for the successful completion of cytokinesis. Furthermore, FIP3 (family of Rab11-interacting protein 3), a Rab11 GTPase-binding protein, has been implicated in targeting the recycling endosomes to the midbody of dividing cells. Previously, we have shown that FIP3/Rab11-containing endosomes associate with centrosomes until anaphase, at which time they translocate to the cleavage furrow. At telophase, FIP3/Rab11-containing endosomes move from the furrow into the midbody, and this step is required for abscission. While several other proteins were implicated in regulating FIP3 targeting to the cleavage furrow, the mechanisms regulating the dynamics of FIP3-containing endosomes during mitosis have not been defined. To identify the factors regulating FIP3 targeting to the furrow, we used a combination of siRNA (small interfering RNA) screens and proteomic analysis to identify Cyk-4/MgcRacGAP (GTPase-activating protein) and kinesin I as FIP3-binding proteins. Furthermore, kinesin I mediates the transport of FIP3-containing endosomes to the cleavage furrow. Once in the furrow, FIP3 binds to Cyk-4 as part of centralspindlin complex and accumulates at the midbody. Finally, we demonstrated that ECT2 regulates FIP3 association with the centralspindlin complex. Thus we propose that kinesin I, in concert with centralspindlin complex, plays a role in temporal and spatial regulation of endosome transport to the cleavage furrow during cytokinesis.


2002 ◽  
Vol 13 (12) ◽  
pp. 4333-4342 ◽  
Author(s):  
Akira Nagasaki ◽  
Go Itoh ◽  
Shigehiko Yumura ◽  
Taro Q.P. Uyeda

We have cloned a full-length cDNA encoding a novel myosin II heavy chain kinase (mhckC) from Dictyostelium. Like other members of the myosin heavy chain kinase family, themhckC gene product, MHCK C, has a kinase domain in its N-terminal half and six WD repeats in the C-terminal half. GFP-MHCK C fusion protein localized to the cortex of interphase cells, to the cleavage furrow of mitotic cells, and to the posterior of migrating cells. These distributions of GFP-MHCK C always corresponded with that of myosin II filaments and were not observed in myosin II-null cells, where GFP-MHCK C was diffusely distributed in the cytoplasm. Thus, localization of MHCK C seems to be myosin II-dependent. Cells lacking the mhckC gene exhibited excessive aggregation of myosin II filaments in the cleavage furrows and in the posteriors of the daughter cells once cleavage was complete. The cleavage process of these cells took longer than that of wild-type cells. Taken together, these findings suggest MHCK C drives the disassembly of myosin II filaments for efficient cytokinesis and recycling of myosin II that occurs during cytokinesis.


2000 ◽  
Vol 151 (5) ◽  
pp. 1003-1012 ◽  
Author(s):  
Anne-Marie C. Yvon ◽  
Patricia Wadsworth

Photoactivation and photobleaching of fluorescence were used to determine the mechanism by which microtubules (MTs) are remodeled in PtK2 cells during fibroblast-like motility in response to hepatocyte growth factor (HGF). The data show that MTs are transported during cell motility in an actomyosin-dependent manner, and that the direction of transport depends on the dominant force in the region examined. MTs in the leading lamella move rearward relative to the substrate, as has been reported in newt cells (Waterman-Storer, C.M., and E.D. Salmon. 1997. J. Cell Biol. 139:417–434), whereas MTs in the cell body and in the retraction tail move forward, in the direction of cell locomotion. In the transition zone between the peripheral lamella and the cell body, a subset of MTs remains stationary with respect to the substrate, whereas neighboring MTs are transported either forward, with the cell body, or rearward, with actomyosin retrograde flow. In addition to transport, the photoactivated region frequently broadens, indicating that individual marked MTs are moved either at different rates or in different directions. Mark broadening is also observed in nonmotile cells, indicating that this aspect of transport is independent of cell locomotion. Quantitative measurements of the dissipation of photoactivated fluorescence show that, compared with MTs in control nonmotile cells, MT turnover is increased twofold in the lamella of HGF-treated cells but unchanged in the retraction tail, demonstrating that microtubule turnover is regionally regulated.


2021 ◽  
Author(s):  
Anja Schmidt ◽  
Long Li ◽  
Zhiyi Lv ◽  
Shuling Yan ◽  
Jörg Großhans

Rho signaling with its major targets the formin Dia, Rho kinase (Rok) and non-muscle myosin II control turnover, amount and contractility of actomyosin. Much less investigated has been a potential function for the distribution of F-actin plus and minus ends. In syncytial Drosophila embryos Rho1 signaling is high between actin caps, i. e. the cortical intercap region. Capping protein binds to free plus ends of F-actin to prevent elongation of the filament. Capping protein has served as a marker to visualize the distribution of F-actin plus ends in cells and in vitro. Here, we probed the distribution of plus ends with capping protein in syncytial Drosophila embryos. We found that Capping proteins are specifically enriched in the intercap region similar to Dia and MyoII but distinct from overall F-actin. The intercap enrichment of Capping protein was impaired in dia mutants and embryos, in which Rok and MyoII activation was inhibited. Our observations reveal that Dia and Rok/MyoII control Capping protein enrichment and support a model that Dia and Rok/MyoII control the organization of cortical actin cytoskeleton downstream of Rho1 signaling.


2020 ◽  
Vol 219 (8) ◽  
Author(s):  
Bernardo Chapa-y-Lazo ◽  
Motonari Hamanaka ◽  
Alexander Wray ◽  
Mohan K. Balasubramanian ◽  
Masanori Mishima

Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.


Sign in / Sign up

Export Citation Format

Share Document