centromeric protein
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Reito Watanabe ◽  
Yasuhiro Hirano ◽  
Masatoshi Hara ◽  
Yasushi Hiraoka ◽  
Tatsuo Fukagawa

AbstractThe kinetochore is essential for faithful chromosome segregation during mitosis and is assembled through dynamic processes involving numerous kinetochore proteins. Various experimental strategies have been used to understand kinetochore assembly processes. Fluorescence recovery after photobleaching (FRAP) analysis is also a useful strategy for revealing the dynamics of kinetochore assembly. In this study, we introduced fluorescence protein-tagged kinetochore protein cDNAs into each endogenous locus and performed FRAP analyses in chicken DT40 cells. Centromeric protein (CENP)-C was highly mobile in interphase, but immobile during mitosis. CENP-C mutants lacking the CENP-A-binding domain became mobile during mitosis. In contrast to CENP-C, CENP-T and CENP-H were immobile during both interphase and mitosis. The mobility of Dsn1, which is a component of the Mis12 complex and directly binds to CENP-C, depended on CENP-C mobility during mitosis. Thus, our FRAP assays provide dynamic aspects of how the kinetochore is assembled.


2021 ◽  
Author(s):  
Venkata S. P. Patchigolla ◽  
Barbara G. Mellone

Centromeres are essential chromosomal regions that mediate the accurate inheritance of genetic information during eukaryotic cell division. Despite their conserved function, centromeres do not contain conserved DNA sequences and are instead epigenetically marked by the presence of the centromere-specific histone H3 variant CENP-A (centromeric protein A). The functional contribution of centromeric DNA sequences to centromere identity remains elusive. Previous work found that dyad symmetries with a propensity to adopt non-canonical secondary DNA structures are enriched at the centromeres of several species. These findings lead to the proposal that such non-canonical DNA secondary structures may contribute to centromere specification. Here, we analyze the predicted secondary structures of the recently identified centromere DNA sequences from Drosophila melanogaster. Although dyad symmetries are only enriched on the Y centromere, we find that other types of non-canonical DNA structures, including DNA melting and G-quadruplexes, are common features of all D. melanogaster centromeres. Our work is consistent with previous models suggesting that non-canonical DNA secondary structures may be conserved features of centromeres with possible implications for centromere specification.


2021 ◽  
Vol 134 (23) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Joanna Wenda is first author on ‘ Mitotic chromosome condensation requires phosphorylation of the centromeric protein KNL-2 in C. elegans’, published in JCS. Joanna is a PhD student (in the process of graduating) in the lab of Florian Steiner at Department of Molecular Biology, University of Geneva, Geneva, Switzerland, investigating chromatin and cell biology, specifically centromere maintenance and mitotic chromosome formation.


2021 ◽  
Author(s):  
Joanna M. Wenda ◽  
Reinier F. Prosée ◽  
Caroline Gabus ◽  
Florian A. Steiner

Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1 in vitro, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans.


2021 ◽  
Author(s):  
Joanna M Wenda ◽  
Reinier F Prosée ◽  
Caroline Gabus ◽  
Florian A Steiner

Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2053
Author(s):  
Mohsen Hesami ◽  
Mohsen Yoosefzadeh Najafabadi ◽  
Kristian Adamek ◽  
Davoud Torkamaneh ◽  
Andrew Maxwell Phineas Jones

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing system has recently been used for haploid production in plants. Haploid induction using the CRISPR/Cas system represents an attractive approach in cannabis, an economically important industrial, recreational, and medicinal plant. However, the CRISPR system requires the design of precise (on-target) single-guide RNA (sgRNA). Therefore, it is essential to predict off-target activity of the designed sgRNAs to avoid unexpected outcomes. The current study is aimed to assess the predictive ability of three machine learning (ML) algorithms (radial basis function (RBF), support vector machine (SVM), and random forest (RF)) alongside the ensemble-bagging (E-B) strategy by synergizing MIT and cutting frequency determination (CFD) scores to predict sgRNA off-target activity through in silico targeting a histone H3-like centromeric protein, HTR12, in cannabis. The RF algorithm exhibited the highest precision, recall, and F-measure compared to all the tested individual algorithms with values of 0.61, 0.64, and 0.62, respectively. We then used the RF algorithm as a meta-classifier for the E-B method, which led to an increased precision with an F-measure of 0.62 and 0.66, respectively. The E-B algorithm had the highest area under the precision recall curves (AUC-PRC; 0.74) and area under the receiver operating characteristic (ROC) curves (AUC-ROC; 0.71), displaying the success of using E-B as one of the common ensemble strategies. This study constitutes a foundational resource of utilizing ML models to predict gRNA off-target activities in cannabis.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 911
Author(s):  
Ganesan Arunkumar ◽  
Daniël P. Melters

In most species, the centromere is comprised of repetitive DNA sequences, which rapidly evolve. Paradoxically, centromeres fulfill an essential function during mitosis, as they are the chromosomal sites wherein, through the kinetochore, the mitotic spindles bind. It is now generally accepted that centromeres are transcribed, and that such transcription is associated with a broad range of functions. More than a decade of work on this topic has shown that centromeric transcripts are found across the eukaryotic tree and associate with heterochromatin formation, chromatin structure, kinetochore structure, centromeric protein loading, and inner centromere signaling. In this review, we discuss the conservation of small and long non-coding centromeric RNAs, their associations with various centromeric functions, and their potential roles in disease.


2020 ◽  
Vol 64 (2) ◽  
pp. 299-311 ◽  
Author(s):  
Amanda J. Broad ◽  
Jennifer G. DeLuca

Abstract The fidelity of chromosome segregation during mitosis is intimately linked to the function of kinetochores, which are large protein complexes assembled at sites of centromeric heterochromatin on mitotic chromosomes. These key “orchestrators” of mitosis physically connect chromosomes to spindle microtubules and transduce forces through these connections to congress chromosomes and silence the spindle assembly checkpoint. Kinetochore-microtubule attachments are highly regulated to ensure that incorrect attachments are not prematurely stabilized, but instead released and corrected. The kinase activity of the centromeric protein Aurora B is required for kinetochore-microtubule destabilization during mitosis, but how the kinase acts on outer kinetochore substrates to selectively destabilize immature and erroneous attachments remains debated. Here, we review recent literature that sheds light on how Aurora B kinase is recruited to both centromeres and kinetochores and discuss possible mechanisms for how kinase interactions with substrates at distinct regions of mitotic chromosomes are regulated.


Sign in / Sign up

Export Citation Format

Share Document