myosin heavy chain kinase
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 1)

H-INDEX

13
(FIVE YEARS 0)

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1229
Author(s):  
Md. Istiaq Obaidi Tanvir ◽  
Go Itoh ◽  
Hiroyuki Adachi ◽  
Shigehiko Yumura

Wound repair of cell membranes is essential for cell survival. Myosin II contributes to wound pore closure by interacting with actin filaments in larger cells; however, its role in smaller cells is unclear. In this study, we observed wound repair in dividing cells for the first time. The cell membrane in the cleavage furrow, where myosin II localized, was wounded by laserporation. Upon wounding, actin transiently accumulated, and myosin II transiently disappeared from the wound site. Ca2+ influx from the external medium triggered both actin and myosin II dynamics. Inhibition of calmodulin reduced both actin and myosin II dynamics. The wound closure time in myosin II-null cells was the same as that in wild-type cells, suggesting that myosin II is not essential for wound repair. We also found that disassembly of myosin II filaments by phosphorylation did not contribute to their disappearance, indicating a novel mechanism for myosin II delocalization from the cortex. Furthermore, we observed that several furrow-localizing proteins such as GAPA, PakA, myosin heavy chain kinase C, PTEN, and dynamin disappeared upon wounding. Herein, we discuss the possible mechanisms of myosin dynamics during wound repair.


2010 ◽  
Vol 3 (111) ◽  
pp. ra17-ra17 ◽  
Author(s):  
Q. Ye ◽  
S. W. Crawley ◽  
Y. Yang ◽  
G. P. Cote ◽  
Z. Jia

2009 ◽  
Vol 9 (2) ◽  
pp. 344-349
Author(s):  
Atiya Franklin ◽  
Linzi Hyatt ◽  
Alyssa Chowdhury ◽  
Paul A. Steimle

ABSTRACT Myosin II disassembly in Dictyostelium discoideum is regulated by three structurally related myosin heavy chain kinases (myosin II heavy chain kinase A [MHCK-A], -B, and -C). We show that the WD repeat domain of MHCK-C is unique in that it mediates both substrate targeting and subcellular localization, revealing a target for regulation that is distinct from those of the other MHCKs.


2008 ◽  
Vol 181 (5) ◽  
pp. 747-760 ◽  
Author(s):  
Subhanjan Mondal ◽  
Deenadayalan Bakthavatsalam ◽  
Paul Steimle ◽  
Berthold Gassen ◽  
Francisco Rivero ◽  
...  

Ras guanine nucleotide exchange factor (GEF) Q, a nucleotide exchange factor from Dictyostelium discoideum, is a 143-kD protein containing RasGEF domains and a DEP domain. We show that RasGEF Q can bind to F-actin, has the potential to form complexes with myosin heavy chain kinase (MHCK) A that contain active RasB, and is the predominant exchange factor for RasB. Overexpression of the RasGEF Q GEF domain activates RasB, causes enhanced recruitment of MHCK A to the cortex, and leads to cytokinesis defects in suspension, phenocopying cells expressing constitutively active RasB, and myosin-null mutants. RasGEF Q− mutants have defects in cell sorting and slug migration during later stages of development, in addition to cell polarity defects. Furthermore, RasGEF Q− mutants have increased levels of unphosphorylated myosin II, resulting in myosin II overassembly. Collectively, our results suggest that starvation signals through RasGEF Q to activate RasB, which then regulates processes requiring myosin II.


2006 ◽  
Vol 395 (2) ◽  
pp. 373-383 ◽  
Author(s):  
Misty Russ ◽  
Daniel Croft ◽  
Omar Ali ◽  
Raquel Martinez ◽  
Paul A. Steimle

Myosin heavy-chain kinase A (MHCK A) catalyses the disassembly of myosin II filaments in Dictyostelium cells via myosin II heavy-chain phosphorylation. MHCK A possesses a ‘coiled-coil’-enriched domain that mediates the oligomerization, cellular localization and actin-binding activities of the kinase. F-actin (filamentous actin) binding by the coiled-coil domain leads to a 40-fold increase in MHCK A activity. In the present study we examined the actin-binding characteristics of the coiled-coil domain as a means of identifying mechanisms by which MHCK A-mediated disassembly of myosin II filaments can be regulated in the cell. Co-sedimentation assays revealed that the coiled-coil domain of MHCK A binds co-operatively to F-actin with an apparent KD of approx. 0.5 μM and a stoichiometry of approx. 5:1 [actin/C(1–498)]. Further analyses indicate that the coiled-coil domain binds along the length of the actin filament and possesses at least two actin-binding regions. Quite surprisingly, we found that the coiled-coil domain cross-links actin filaments into bundles, indicating that MHCK A can affect the cytoskeleton in two important ways: (1) by driving myosin II-filament disassembly via myosin II heavy-chain phosphorylation, and (2) by cross-linking/bundling actin filaments. This discovery, along with other supporting data, suggests a model in which MHCK A-mediated bundling of actin filaments plays a central role in the recruitment and activation of the kinase at specific sites in the cell. Ultimately this provides a means for achieving the robust and highly localized disruption of myosin II filaments that facilitates polarized changes in cell shape during processes such as chemotaxis, cytokinesis and multicellular development.


2004 ◽  
Vol 280 (4) ◽  
pp. 2879-2887 ◽  
Author(s):  
Thomas T. Egelhoff ◽  
Daniel Croft ◽  
Paul A. Steimle

Sign in / Sign up

Export Citation Format

Share Document