Cdc28-Clb mitotic kinase negatively regulates bud site assembly in the budding yeast

2001 ◽  
Vol 114 (1) ◽  
pp. 207-218 ◽  
Author(s):  
C.G. Padmashree ◽  
U. Surana

In the budding yeast Saccharomyces cerevisiae, a prospective mother normally commences the formation of a daughter (the bud) only in the G(1) phase of the cell division cycle. This suggests a strict temporal regulation of the processes that initiate the formation of a new bud. Using cortical localization of bud site components Spa2 and Bni1 as an indicator of bud site assembly, we show that cells assemble a bud site following inactivation of the Cdc28-Clb mitotic kinase but prior to START. Interestingly, an untimely inactivation of the mitotic kinase is sufficient to drive cells to assemble a new bud site inappropriately in G(2) or M phases. The induction of Cdc28/Clb kinase activity in G(1), on the other hand, dramatically reduces a cell's ability to construct an incipient bud site. Our findings strongly suggest that the Cdc28-Clb kinase plays a critical role in the mechanism that restricts the timing of bud formation to the G(1) phase of the cell cycle.

2018 ◽  
Vol 29 (17) ◽  
pp. 2069-2083 ◽  
Author(s):  
Helen Lai ◽  
Jian-Geng Chiou ◽  
Anastasia Zhurikhina ◽  
Trevin R. Zyla ◽  
Denis Tsygankov ◽  
...  

Tip growth in fungi involves highly polarized secretion and modification of the cell wall at the growing tip. The genetic requirements for initiating polarized growth are perhaps best understood for the model budding yeast Saccharomyces cerevisiae. Once the cell is committed to enter the cell cycle by activation of G1 cyclin/cyclin-dependent kinase (CDK) complexes, the polarity regulator Cdc42 becomes concentrated at the presumptive bud site, actin cables are oriented toward that site, and septin filaments assemble into a ring around the polarity site. Several minutes later, the bud emerges. Here, we investigated the mechanisms that regulate the timing of these events at the single-cell level. Septin recruitment was delayed relative to polarity establishment, and our findings suggest that a CDK-dependent septin “priming” facilitates septin recruitment by Cdc42. Bud emergence was delayed relative to the initiation of polarized secretion, and our findings suggest that the delay reflects the time needed to weaken the cell wall sufficiently for the cell to bud. Rho1 activation by Rom2 occurred at around the time of bud emergence, perhaps in response to local cell-wall weakening. This report reveals regulatory mechanisms underlying the morphogenetic events in the budding yeast.


1993 ◽  
Vol 13 (6) ◽  
pp. 3744-3755 ◽  
Author(s):  
C S Stueland ◽  
D J Lew ◽  
M J Cismowski ◽  
S I Reed

In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation.


1992 ◽  
Vol 12 (12) ◽  
pp. 5690-5699 ◽  
Author(s):  
Y Matsui ◽  
A Toh-E

RHO3 and RHO4 are members of the ras superfamily genes of the yeast Saccharomyces cerevisiae and are related functionally to each other. Experiments using a conditionally expressed allele of RHO4 revealed that depletion of both the RHO3 and RHO4 gene products resulted in lysis of cells with a small bud, which could be prevented by the presence of osmotic stabilizing agents in the medium. rho3 rho4 cells incubated in medium containing an osmotic stabilizing agent were rounded and enlarged and displayed delocalized deposition of chitin and delocalization of actin patches, indicating that these cells lost cell polarity. Nine genes whose overexpression could suppress the defect of the RHO3 function were isolated (SRO genes). Two of them were identical with CDC42 and BEM1, bud site assembly genes involved in the process of bud emergence. A high dose of CDC42 complemented the rho3 defect, whereas overexpression of RHO3 had an inhibitory effect on the growth of mutants defective in the CDC24-CDC42 pathway. These results, along with comparison of cell morphology between rho3 rho4 cells and cdc24 (or cdc42) mutant cells kept under the restrictive conditions, strongly suggest that the functions of RHO3 and RHO4 are required after initiation of bud formation to maintain cell polarity during maturation of daughter cells.


1993 ◽  
Vol 13 (6) ◽  
pp. 3744-3755
Author(s):  
C S Stueland ◽  
D J Lew ◽  
M J Cismowski ◽  
S I Reed

In most cells, mitosis is dependent upon completion of DNA replication. The feedback mechanisms that prevent entry into mitosis by cells with damaged or incompletely replicated DNA have been termed checkpoint controls. Studies with the fission yeast Schizosaccharomyces pombe and Xenopus egg extracts have shown that checkpoint controls prevent activation of the master regulatory protein kinase, p34cdc2, that normally triggers entry into mitosis. This is achieved through inhibitory phosphorylation of the Tyr-15 residue of p34cdc2. However, studies with the budding yeast Saccharomyces cerevisiae have shown that phosphorylation of this residue is not essential for checkpoint controls to prevent mitosis. We have investigated the basis for checkpoint controls in this organism and show that these controls can prevent entry into mitosis even in cells which have fully activated the cyclin B (Clb)-associated forms of the budding yeast homolog of p34cdc2, p34CDC28, as assayed by histone H1 kinase activity. However, the active complexes in checkpoint-arrested cells are smaller than those in cycling cells, suggesting that assembly of mitosis-inducing complexes requires additional steps following histone H1 kinase activation.


1989 ◽  
Vol 1989 (Supplement 12) ◽  
pp. 99-116 ◽  
Author(s):  
M.-A. FELIX ◽  
J. PINES ◽  
T. HUNT ◽  
E. KARSENTI

1992 ◽  
Vol 12 (12) ◽  
pp. 5690-5699 ◽  
Author(s):  
Y Matsui ◽  
A Toh-E

RHO3 and RHO4 are members of the ras superfamily genes of the yeast Saccharomyces cerevisiae and are related functionally to each other. Experiments using a conditionally expressed allele of RHO4 revealed that depletion of both the RHO3 and RHO4 gene products resulted in lysis of cells with a small bud, which could be prevented by the presence of osmotic stabilizing agents in the medium. rho3 rho4 cells incubated in medium containing an osmotic stabilizing agent were rounded and enlarged and displayed delocalized deposition of chitin and delocalization of actin patches, indicating that these cells lost cell polarity. Nine genes whose overexpression could suppress the defect of the RHO3 function were isolated (SRO genes). Two of them were identical with CDC42 and BEM1, bud site assembly genes involved in the process of bud emergence. A high dose of CDC42 complemented the rho3 defect, whereas overexpression of RHO3 had an inhibitory effect on the growth of mutants defective in the CDC24-CDC42 pathway. These results, along with comparison of cell morphology between rho3 rho4 cells and cdc24 (or cdc42) mutant cells kept under the restrictive conditions, strongly suggest that the functions of RHO3 and RHO4 are required after initiation of bud formation to maintain cell polarity during maturation of daughter cells.


2003 ◽  
Vol 14 (2) ◽  
pp. 798-809 ◽  
Author(s):  
Nicola Tolliday ◽  
Maria Pitcher ◽  
Rong Li

In the budding yeast Saccharomyces cerevisiae, an actomyosin-based contractile ring is present during cytokinesis, as occurs in animal cells. However, the precise requirement for this structure during budding yeast cytokinesis has been controversial. Here we show that deletion of MYO1, the single myosin II gene, is lethal in a commonly used strain background. The terminal phenotype of myo1Δ is interconnected chains of cells, suggestive of a cytokinesis defect. To further investigate the role of Myo1p in cytokinesis, we conditionally disrupted Myo1 function by using either a dominant negative Myo1p construct or a strain where expression of Myo1p can be shut-off. Both ways of disruption of Myo1 function result in a failure in cytokinesis. Additionally, we show that amyo1Δ strain previously reported to grow nearly as well as the wild type contains a single genetic suppressor that alleviates the severe cytokinesis defects of myo1Δ. Using fluorescence time-lapse imaging and electron microscopy techniques, we show that cytokinesis in this strain is achieved through formation of multiple aberrant septa. Taken together, these results strongly suggest that the actomyosin ring is crucial for successful cytokinesis in budding yeast, but new cytokinetic mechanisms can evolve through genetic changes when myosin II function is impaired.


2015 ◽  
Author(s):  
Jay R. Hesselberth ◽  
Debra Suzi Bryan

Antimetabolite chemotherapies increase uracil levels in DNA, and thus identification of factors that influence the uracil content in DNA may have implications for understanding uracil-mediated chromosomal instability. We previously showed in the budding yeast Saccharomyces cerevisiae that uracil content in DNA correlates with replication timing, where the earliest and latest replicating regions are depleted in uracil. Here, we manipulated nucleotide biosynthesis enzymes in budding yeast to determine whether the pattern of uracil incorporation could be altered. In strains with high levels of uracil incorporation, deletion of dCMP deaminase (Dcd1) accelerated uracil incorporation at early-firing origins, likely due to rapid dTTP pool depletion. In contrast, increasing the activity of ribonucleotide reductase, which is required for the synthesis of all dNTPs via ribonucleotide diphosphates, lead to dUTP and dTTP pool equilibration and a concomitant increase in uracil content throughout the genome. These data suggest that uracil availability and the dUTP:dTTP ratio are temporally regulated during S phase and govern uracil incorporation into the genome. Therapeutic manipulation of nucleotide biosynthesis in human cells to either increase the dUTP pool or deplete the dTTP pool in early S phase may therefore improve the efficacy of antimetabolite chemotherapies.


Microbiology ◽  
1997 ◽  
Vol 143 (6) ◽  
pp. 1867-1876 ◽  
Author(s):  
P. A. Radcliffe ◽  
K. M. Binley ◽  
J. Trevethick ◽  
M. Hall ◽  
P. E. Sudbery

Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 67-77 ◽  
Author(s):  
A Parket ◽  
O Inbar ◽  
M Kupiec

Abstract The Ty retrotransposons are the main family of dispersed repeated sequences in the yeast Saccharomyces cerevisiae. These elements are flanked by a pair of long terminal direct repeats (LTRs). Previous experiments have shown that Ty elements recombine at low frequencies, despite the fact that they are present in 30 copies per genome. This frequency is not highly increased by treatments that cause DNA damage, such as UV irradiation. In this study, we show that it is possible to increase the recombination level of a genetically marked Ty by creating a double-strand break in it. This break is repaired by two competing mechanisms: one of them leaves a single LTR in place of the Ty, and the other is a gene conversion event in which the marked Ty is replaced by an ectopically located one. In a strain in which the marked Ty has only one LTR, the double-strand break is repaired by conversion. We have also measured the efficiency of repair and monitored the progression of the cells through the cell-cycle. We found that in the presence of a double-strand break in the marked Ty, a proportion of the cells is unable to resume growth.


Sign in / Sign up

Export Citation Format

Share Document