cortical localization
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 20)

H-INDEX

34
(FIVE YEARS 2)

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1441
Author(s):  
En-Ju Chou ◽  
Tang K. Tang

Autosomal recessive primary microcephaly (MCPH) is a complex neurodevelopmental disorder characterized by a small brain size with mild to moderate intellectual disability. We previously demonstrated that human microcephaly RTTN played an important role in regulating centriole duplication during interphase, but the role of RTTN in mitosis is not fully understood. Here, we show that RTTN is required for normal mitotic progression and correct spindle position. The depletion of RTTN induces the dispersion of the pericentriolar protein γ-tubulin and multiple mitotic abnormalities, including monopolar, abnormal bipolar, and multipolar spindles. Importantly, the loss of RTTN altered NuMA/p150Glued congression to the spindle poles, perturbed NuMA cortical localization, and reduced the number and the length of astral microtubules. Together, our results provide a new insight into how RTTN functions in mitosis.


2021 ◽  
Author(s):  
Shengnan Zheng ◽  
Biyu Zheng ◽  
Zhenbang Liu ◽  
Wenfan Wei ◽  
Chuanhai Fu

Septins are a family of filament-forming GTP-binding proteins that regulate fundamental cellular activities such as cytokinesis, cell polarity, and membrane remodelling. In general, Septin filaments function as barriers and scaffolds on the cell cortex. However, little is known about the mechanism that governs the recruitment and localization of the Septin complex to the cell cortex. Here, we identified the Cdc42 GTPase activating protein Rga6 as a key protein involved in promoting the localization of the Septin complex to the cell cortex in the fission yeast Schizosaccharomyces pombe. Rga6 interacts with the Septin complex and colocalizes with the Septin complex on the cell cortex. Live-cell microscopic analysis further showed Septin enrichment at the cortical regions adjacent to the growing cell tip. The Septin enrichment likely plays a crucial role in confining active Cdc42 to the growing cell tip. Hence, our findings support a model that Rga6 regulates polarized cell growth partly through promoting targeted localization of the Septin complex on the cell cortex.


Development ◽  
2021 ◽  
pp. dev.196956
Author(s):  
Juan Lu ◽  
Wei Dong ◽  
Yan Tao ◽  
Yang Hong

Discs large (Dlg) is an essential polarity protein and a tumor suppressor originally characterized in Drosophila but is also well conserved in vertebrates. Like the majority of polarity proteins, plasma membrane (PM)/cortical localization of Dlg is required for its function in polarity and tumorigenesis, but the exact mechanisms targeting Dlg to PM remain to be fully elucidated. Here we show that, similar to the recently discovered polybasic polarity proteins such as Lgl and aPKC, Dlg also contains a positively charged polybasic domain that electrostatically binds the PM phosphoinositides PI4P and PI(4,5)P2. Electrostatic targeting by the polybasic domain contributes significantly to the PM localization of Dlg in follicular and early embryonic epithelial cells, and is crucial for Dlg to regulate both polarity and tumorigenesis. The electrostatic PM targeting of Dlg is controlled by a potential phosphorylation-dependent allosteric regulation of its polybasic domain, and is specifically enhanced by the interactions between Dlg and another basolateral polarity protein and tumor suppressor Scrib. Our studies highlight an increasingly significant role of electrostatic PM targeting of polarity proteins in regulating cell polarity.


eNeuro ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. ENEURO.0004-21.2021
Author(s):  
Behzad Zareian ◽  
Zhaoran Zhang ◽  
Edward Zagha

2020 ◽  
Vol 10 (11) ◽  
pp. 782
Author(s):  
Alexander Savostyanov ◽  
Andrey Bocharov ◽  
Tatiana Astakhova ◽  
Sergey Tamozhnikov ◽  
Alexander Saprygin ◽  
...  

The aim was to investigate behavioral reactions and event-related potential (ERP) responses in healthy participants under conditions of personalized attribution of emotional appraisal vocabulary to one-self or to other people. One hundred and fifty emotionally neutral, positive and negative words describing people’s traits were used. Subjects were asked to attribute each word to four types of people: one-self, loved, unpleasant and neutral person. The reaction time during adjectives attribution to one-self and a loved person was shorter than during adjectives attribution to neutral and unpleasant people. Self-related adjectives induced higher amplitudes of the N400 ERP peak in the medial cortical areas in comparison with adjectives related to other people. The amplitude of P300 and P600 depended on the emotional valence of assessments, but not on the personalized attribution. The interaction between the attribution effect and the effect of emotional valence of assessments was observed for the N400 peak in the left temporal area. The maximal amplitude of N400 was revealed under self-attributing of emotionally positive adjectives. Our results supported the hypothesis that the emotional valence of assessments and the processing of information about one-self or others were related to the brain processes that differ from each other in a cortical localization or time dynamics.


2020 ◽  
Author(s):  
Juan Lu ◽  
Wei Dong ◽  
Yan Tao ◽  
Yang Hong

SUMMARYDiscs large (Dlg) is an essential polarity protein and a tumor suppressor originally characterized in Drosophila but is also well conserved in vertebrates. Like the majority of polarity proteins, plasma membrane (PM)/cortical localization of Dlg is required for its function in regulating apical-basal polarity and tumorigenesis, but the exact mechanisms targeting Dlg to PM remain to be unclear. Here we show that, similar to recently discovered polybasic polarity proteins such as Lgl and aPKC, Dlg also contains a positively charged polybasic domain that electrostatically binds the PM phosphoinositides PI4P and PI(4,5)P2. Electrostatic targeting by the polybasic domain acts as the primary mechanism localizing Dlg to the PM in follicular and early embryonic epithelial cells, and is crucial for Dlg to regulate both polarity and tumorigenesis. The electrostatic PM targeting of Dlg is controlled by a potential phosphorylation-dependent allosteric regulation of its polybasic domain, and is specifically enhanced by interactions between Dlg and another basolateral polarity protein and tumor suppressor Scrib. Our studies highlight an increasingly significant role of electrostatic PM targeting of polarity proteins in regulating cell polarity.


2020 ◽  
Author(s):  
Hideyuki Komori ◽  
Noemi Rives-Quinto ◽  
Xu Han ◽  
Lucas Anhezini ◽  
Ari J. Esrig ◽  
...  

SummaryAsymmetric segregation of Numb is a conserved mechanism for regulating Notch-mediated binary cell fate decisions; however, the mechanisms controlling Numb segregation remain unclear. Previous studies have proposed an “exclusion” model, suggesting that atypical protein kinase C (aPKC) negatively regulates Numb cortical localization. Here, we report that aPKC kinase activity positively promotes basal cortical Numb localization during asymmetric division of Drosophila neural stem cells (neuroblasts) and that Cullin 3 (Cul3) is required for aPKC-directed basal Numb localization. In numb- or cul3-mutant brains, decreased levels of Numb segregated into neuroblast progeny failed to downregulate Notch, leading to supernumerary neuroblast formation. Increased aPKC kinase activity suppressed supernumerary neuroblast formation by concentrating residual Numb protein at the basal cortex and in neuroblast progeny, whereas decreased aPKC function enhanced the supernumerary neuroblast phenotype by reducing basal Numb levels. We propose that aPKC and Cul3 promote basal Numb localization, which is required to downregulate Notch signaling and promote differentiation in neuroblast progeny.


2020 ◽  
Author(s):  
Behzad Zareian ◽  
Zhaoran Zhang ◽  
Edward Zagha

AbstractResponding to a stimulus requires transforming an internal sensory representation into an internal motor representation. Where and how this sensory-motor transformation occurs is a matter of vigorous debate. Here, we trained mice in a whisker detection go/no-go task in which they learned to respond (lick) following a transient whisker deflection. Using single unit recordings, we quantified sensory-, motor- and choice-related activities in whisker primary somatosensory cortex (S1), whisker primary motor cortex (wMC) and anterior lateral motor cortex (ALM). Based on the criteria of having both strong sensory and motor representations and early choice probability, we identify whisker motor cortex as the cortical region most directly related to the sensory-motor transformation. Our data support a model of sensory amplification occurring between S1 and wMC, sensory-motor transformation occurring within wMC, and propagation of a motor command occurring between wMC and ALM.


2020 ◽  
Vol 133 (14) ◽  
pp. jcs243857 ◽  
Author(s):  
Riya Keshri ◽  
Ashwathi Rajeevan ◽  
Sachin Kotak

ABSTRACTProper orientation of the mitotic spindle is critical for accurate development and morphogenesis. In human cells, spindle orientation is regulated by the evolutionarily conserved protein NuMA, which interacts with dynein and enriches it at the cell cortex. Pulling forces generated by cortical dynein orient the mitotic spindle. Cdk1-mediated phosphorylation of NuMA at threonine 2055 (T2055) negatively regulates its cortical localization. Thus, only NuMA not phosphorylated at T2055 localizes at the cell cortex. However, the identity and the mechanism of action of the phosphatase complex involved in T2055 dephosphorylation remains elusive. Here, we characterized the PPP2CA-B55γ (PPP2R2C)–PPP2R1B complex that counteracts Cdk1 to orchestrate cortical NuMA for proper spindle orientation. In vitro reconstitution experiments revealed that this complex is sufficient for T2055 dephosphorylation. Importantly, we identified polybasic residues in NuMA that are critical for T2055 dephosphorylation, and for maintaining appropriate cortical NuMA levels for accurate spindle elongation. Furthermore, we found that Cdk1-mediated phosphorylation and PP2A-B55γ-mediated dephosphorylation at T2055 are reversible events. Altogether, this study uncovers a novel mechanism by which Cdk1 and its counteracting PP2A-B55γ complex orchestrate spatiotemporal levels of cortical force generators for flawless mitosis.


2019 ◽  
Vol 218 (12) ◽  
pp. 4112-4126
Author(s):  
Alexandra Bondaz ◽  
Luca Cirillo ◽  
Patrick Meraldi ◽  
Monica Gotta

In animal cells, faithful chromosome segregation depends on the assembly of a bipolar spindle driven by the timely separation of the two centrosomes. Here we took advantage of the highly stereotypical cell divisions in Caenorhabditis elegans embryos to identify new regulators of centrosome separation. We find that at the two-cell stage, the somatic AB cell initiates centrosome separation later than the germline P1 cell. This difference is strongly exacerbated by the depletion of the kinesin-13 KLP-7/MCAK, resulting in incomplete centrosome separation at NEBD in AB but not P1. Our genetic and cell biology data indicate that this phenotype depends on cell polarity via the enrichment in AB of the mitotic kinase PLK-1, which itself limits the cortical localization of the dynein-binding NuMA orthologue LIN-5. We postulate that the timely separation of centrosomes is regulated in a cell type–dependent manner.


Sign in / Sign up

Export Citation Format

Share Document