Hairless is translocated to the nucleus via a novel bipartite nuclear localization signal and is associated with the nuclear matrix

2001 ◽  
Vol 114 (2) ◽  
pp. 367-376
Author(s):  
K. Djabali ◽  
V.M. Aita ◽  
A.M. Christiano

Hair follicle cycling is an exquisitely regulated and dynamic process consisting of phases of growth, regression and quiescence. The transitions between the phases are governed by a growing number of regulatory proteins, including transcription factors. The hairless (hr) gene encodes a putative transcription factor that is highly expressed in the skin, where it appears to be an essential regulator during the regression of the catagen hair follicle. In hairless mice, as well as humans with congenital atrichia, the absence of hr gene function initiates a premature and abnormal catagen due to a dysregulation of apoptosis and cell adhesion, and defects in the signaling required for hair follicle remodeling. Here, we report structure-function studies of the hairless gene product, in which we identify a novel bipartite nuclear localization signal (NLS) of the form KRA(X13) PKR. Deletion analysis of the mouse hr gene mapped the NLS to amino acid residues 409–427. Indirect immunofluorescence microscopy of cells transiently transfected with hairless-green fluorescent fusion proteins demonstrated that these amino acid residues are necessary and sufficient for nuclear localization. Furthermore, nuclear fractionation analysis revealed that the hr protein is associated with components of the nuclear matrix.

2003 ◽  
Vol 374 (2) ◽  
pp. 545-550 ◽  
Author(s):  
Cesar MUÑOZ-FONTELA ◽  
Estefanía RODRÍGUEZ ◽  
Cesar NOMBELA ◽  
Javier ARROYO ◽  
Carmen RIVAS

LANA2 is a nuclear latent protein detected exclusively in Kaposi's sarcoma-associated herpesvirus-infected B cells. The protein inhibits p53-dependent transactivation and apoptosis, suggesting an important role in the transforming activity of the virus. To explore the molecular mechanisms of its nuclear localization, fusion proteins of green fluorescent protein (EGFP) and deletion constructs of LANA2 were expressed in HeLa cells. Only the fragment comprising amino acid residues 355–440 of LANA2 localized in the cell nucleus. This fragment contains two closely located basic domains and forms a putative bipartite nuclear localization signal (NLS). The putative LANA2 NLS was able to target EGFP to the nucleus consistently. Site-directed mutation analyses demonstrated that LANA2 contains a functional bipartite NLS between amino acid positions 367 and 384. In addition, analysis of cells transfected with a cytoplasmic LANA2 mutant revealed that an appropriate subcellular localization may be crucial to regulate p53 activity.


2005 ◽  
Vol 393 (1) ◽  
pp. 245-254 ◽  
Author(s):  
Catherine Martel ◽  
Paolo Macchi ◽  
Luc Furic ◽  
Michael A. Kiebler ◽  
Luc Desgroseillers

Mammalian Stau1 (Staufen1), a modular protein composed of several dsRBDs (double-stranded RNA-binding domains), is probably involved in mRNA localization. Although Stau1 is mostly described in association with the rough endoplasmic reticulum and ribosomes in the cytoplasm, recent studies suggest that it may transit through the nucleus/nucleolus. Using a sensitive yeast import assay, we show that Stau1 is actively imported into the nucleus through a newly identified bipartite nuclear localization signal. As in yeast, the bipartite nuclear localization signal is necessary for Stau1 nuclear import in mammalian cells. It is also required for Stau1 nucleolar trafficking. However, Stau1 nuclear transit seems to be regulated by mechanisms that involve cytoplasmic retention and/or facilitated nuclear export. Cytoplasmic retention is mainly achieved through the action of dsRBD3, with dsRBD2 playing a supporting role in this function. Similarly, dsRBD3, but not its RNA-binding activity, is critical for Stau1 nucleolar trafficking. The function of dsRBD3 is strengthened or stabilized by the presence of dsRBD4 but prevented by the interdomain between dsRBD2 and dsRBD3. Altogether, these results suggest that Stau1 nuclear trafficking is a highly regulated process involving several determinants. The presence of Stau1 in the nucleus/nucleolus suggests that it may be involved in ribonucleoprotein formation in the nucleus and/or in other nuclear functions not necessarily related to mRNA transport.


1993 ◽  
Vol 105 (2) ◽  
pp. 481-488 ◽  
Author(s):  
J.V. Frangioni ◽  
B.G. Neel

We have constructed a general purpose mammalian expression vector for the study of intracellular protein targeting. The vector, p3PK, facilitates construction of N- and/or C-terminal fusions of an amino acid sequence of interest to the normally cytosolic protein chicken muscle pyruvate kinase (CMPK). The vector has been engineered such that any fusion construct can be subcloned into the versatile pJx omega family of mammalian expression vectors and into pGEX bacterial expression vectors, for the generation of affinity reagents. In this paper, we demonstrate the general utility of p3PK by redirecting CMPK to mitochondria (using the twelve amino acid pre-sequence of yeast cytochrome c oxidase subunit IV) and to the nucleus (using a putative eight amino acid nuclear localization signal from human nuclear lamins A and C). We also report that, contrary to the predictions of previously published work, substitution of a critical residue in the nuclear lamin A/C nuclear localization signal (the equivalent of lysine 128 in the SV40 large T nuclear localization signal) retains nuclear localization, and discuss how amino acid context might affect targeting to the nucleus.


2020 ◽  
Vol 58 (6) ◽  
pp. 675-679
Author(s):  
Juri Kim ◽  
Mee Young Shin ◽  
Soon-Jung Park

MYB2 protein was identified as a transcription factor that showed encystation-induced expression in <i>Giardia lamblia</i>. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of <i>G. lamblia</i> MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of <i>G. lamblia</i> glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507–#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLS<sub>GlMYB2</sub>. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLS<sub>GlMYB2</sub> and <i>G. lamblia</i> glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in <i>G. lamblia.</i>


Biochemistry ◽  
2008 ◽  
Vol 47 (52) ◽  
pp. 13764-13777 ◽  
Author(s):  
Gualtiero Alvisi ◽  
Simone Avanzi ◽  
Daniele Musiani ◽  
Daria Camozzi ◽  
Valerio Leoni ◽  
...  

FEBS Letters ◽  
1997 ◽  
Vol 413 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Yuri P. Rubtsov ◽  
Andrei S. Zolotukhin ◽  
Ivan A. Vorobjev ◽  
Nina V. Chichkova ◽  
Nickolay A. Pavlov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document