The dynamics of plasma membrane PtdIns(4,5)P2 at fertilization of mouse eggs

2002 ◽  
Vol 115 (10) ◽  
pp. 2139-2149 ◽  
Author(s):  
Guillaume Halet ◽  
Richard Tunwell ◽  
Tamas Balla ◽  
Karl Swann ◽  
John Carroll

A series of intracellular Ca2+ oscillations are responsible for triggering egg activation and cortical granule exocytosis at fertilization in mammals. These Ca2+ oscillations are generated by an increase in inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which results from the hydrolysis of phosphatidylinositol 4,5-bisphosphate[PtdIns(4,5)P2]. Using confocal imaging to simultaneously monitor Ca2+ and plasma membrane PtdIns(4,5)P2in single living mouse eggs we have sought to establish the relationship between the kinetics of PtdIns(4,5)P2 metabolism and the Ca2+ oscillations at fertilization. We report that there is no detectable net loss of plasma membrane PtdIns(4,5)P2either during the latent period or during the subsequent Ca2+oscillations. When phosphatidylinositol 4-kinase is inhibited with micromolar wortmannin a limited decrease in plasma membrane PtdIns(4,5)P2 is detected in half the eggs studied. Although we were unable to detect a widespread loss of PtdIns(4,5)P2, we found that fertilization triggers a net increase in plasma membrane PtdIns(4,5)P2 that is localized to the vegetal cortex. The fertilization-induced increase in PtdIns(4,5)P2 follows the increase in Ca2+, is blocked by Ca2+ buffers and can be mimicked, albeit with slower kinetics, by photoreleasing Ins(1,4,5)P3. Inhibition of Ca2+-dependent exocytosis of cortical granules, without interfering with Ca2+ transients, inhibits the PtdIns(4,5)P2 increase. The increase appears to be due to de novo synthesis since it is inhibited by micromolar wortmannin. Finally,there is no increase in PtdIns(4,5)P2 in immature oocytes that are not competent to extrude cortical granules. These studies suggest that fertilization does not deplete plasma membrane PtdIns(4,5)P2 and that one of the pathways for increasing PtdIns(4,5)P2 at fertilization is invoked by exocytosis of cortical granules.

1996 ◽  
Vol 270 (5) ◽  
pp. C1354-C1361 ◽  
Author(s):  
M. Tahara ◽  
K. Tasaka ◽  
N. Masumoto ◽  
A. Mammoto ◽  
Y. Ikebuchi ◽  
...  

Sperm-egg fusion induces an intracellular free calcium concentration ([Ca2+]i) increase and exocytosis of cortical granules (CGs). Recently we used an impermeable fluorescent membrane probe, 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), to develop a method to evaluate the kinetics of exocytosis in single living cells. In this study we used digital imaging and confocal laser scanning microscopy to evaluate CG exocytosis in living mouse eggs with TMA-DPH. Time-related changes of CG exocytosis were estimated as the percent increase of TMA-DPH fluorescence. The increase of fluorescence in the egg started after sperm attachment, continued at an almost uniform rate, and ceased at 45-60 min. Whereas the [Ca2+]i increase at fertilization was transient or oscillatory, exocytosis was not always induced concomitantly with each [Ca2+]i peak. Next we used this method to determine some intracellular mediators of exocytosis in the egg. An intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, and a microfilament inhibitor, cytochalasin B, blocked sperm-induced exocytosis. A guanosine 5'-triphosphate-binding protein activator, AlF4-, induced exocytosis. These results suggest that [Ca2+]i, microfilament, and guanosine 5'-triphosphate-binding proteins may be involved in CG exocytosis. In conclusion, this method has significant advantages for studying exocytosis in living eggs.


2000 ◽  
Vol 6 (S2) ◽  
pp. 966-967
Author(s):  
Amitabha Chakrabarti ◽  
Heide Schatten

Cortical granules are specialized Golgi-derived membrane-bound secretory granules that are located beneath the plasma membrane in unfertilized sea urchin eggs. Upon fertilization cortical granules discharge in a reaction induced by calcium and release their contents between the plasma membrane and a thin vitelline layer that lines the plasma membrane. Microvilli at the plasma membrane elongate incorporting cortical granule membranes during elongation. The vitelline layer elevates and becomes the egg's fertilization coat that hardens and serves as physical block to polyspermy. While we do not understand the precise mechanisms that participate in cortical granule discharge it is believed that actin plays a role in this process. Because actin and calcium metabolism is affected in aging cells we investigated if cortical granule secretion is affected in aging sea urchin eggs.Lytechinus pictus eggs were obtained by intracoelomic injection of 0.5M KCI to release the eggs into sea water at 23°C.


1983 ◽  
Vol 218 (1213) ◽  
pp. 397-413 ◽  

Egg cortical granules remain attached to the egg plasma membrane when the egg is ruptured. We present evidence that demonstrates that, when the cytoplasmic face of the egg plasma membrane is exposed to micromolar calcium concentrations, an exocytosis of the cortical granules occurs which corresponds to the cortical granule exocytosis seen when the egg is fertilized. The calcium sensitivity of the preparation is decreased by an increase in magnesium concentration and increased by a decrease in magnesium concentration. Exocytosis is inhibited by trifluoperazine (half inhibition at 6 μm), a drug that inhibits the action of the calciumdependent regulatory protein calmodulin. Colchicine, vinblastine, nocodazole, cytochalasin B, phalloidin N -ethylmaleimide-modified myosin subfragment 1, and antibody to actin are without effect on this in vitro exocytosis at concentrations that far exceed those required to disrupt microtubules and microfilaments. Conditions are such that penetration to the exocytotic site is optimal. It is unlikely, therefore, that either actin or tubulin participate intimately in exocytosis. Our data also exclude on quantitative grounds several other mechanisms postulated to account for the fusion of the secretory granule with the plasma membrane.


1988 ◽  
Vol 107 (2) ◽  
pp. 539-544 ◽  
Author(s):  
J L Roe ◽  
H A Farach ◽  
W J Strittmatter ◽  
W J Lennarz

Membrane fusion events are required in three steps in sea urchin fertilization: the acrosome reaction in sperm, fusion of the plasma membrane of acrosome-reacted sperm with the plasma membrane of the egg, and exocytosis of the contents of the egg cortical granules. We recently reported the involvement of a Zn2+-dependent metalloendoprotease in the acrosome reaction (Farach, H. C., D. I. Mundy, W. J. Strittmatter, and W. J. Lennarz. 1987. J. Biol. Chem. 262:5483-5487). In the current study, we investigated the possible involvement of metalloendoproteases in the two other fusion events of fertilization. The use of inhibitors of metalloendoproteases provided evidence that at least one of the fusion events subsequent to the acrosome reaction requires such enzymes. These inhibitors did not block the binding of sperm to egg or the process of cortical granule exocytosis. However, sperm-egg fusion, assayed by the ability of the bound sperm to establish cytoplasmic continuity with the egg, was inhibited by metalloendoprotease substrate. Thus, in addition to the acrosome reaction, an event in the gamete fusion process requires a metalloendoprotease.


Zygote ◽  
1998 ◽  
Vol 6 (1) ◽  
pp. 55-63 ◽  
Author(s):  
John C. Matese ◽  
David R. McClay

SummaryIn sea urchin eggs, fertilisation is followed by a calcium wave, cortical granule exocytosis and fertilisation envelope elevation. Both the calcium wave and cortical granule exocytosis sweep across the egg in a wave initiated at the point of sperm entry. Using differential interference contrast (DIC) microscopy combined with laser scanning confocal microscopy, populations of cortical granules undergoing calcium-induced exocytosis were observed in living urchin eggs. Calcium imaging using the indicator Calcium Green-dextran was combined with an image subtraction technique for visual isolation of individual exocytotic events. Relative fluorescence levels of the calcium indicator during the fertilisation wave were compared with cortical fusion events. In localised regions of the egg, there is a 6s delay between the detection of calcium release and fusion of cortical granules. The rate of calcium accumulation was altered experimentally to ask whether this delay was necessary to achieve a threshold concentration of calcium to trigger fusion, or was a time-dependent activation of the cortical granule fusion apparatus after the ‘triggering’ event. Calcium release rate was attenuated by blocking inositol 1,4,5-triphospate (InsP3)-gated channels with heparin. Heparin extended the time necessary to achieve a minimum concentration of calcium at the sites of cortical granule exocytosis. The data are consistent with the conclusion that much of the delay observed normally is necessary to reach threshold concentration of calcium. Cortical granules then fuse with the plasma membrane. Further, once the minimum threshold calcium concentration is reached, cortical granule fusion with the plasma membrane occurs in a pattern suggesting that cortical granules are non-uniform in their calcium sensitivity threshold.


2016 ◽  
Vol 347 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Oscar Daniel Bello ◽  
Andrea Isabel Cappa ◽  
Matilde de Paola ◽  
María Natalia Zanetti ◽  
Mitsunori Fukuda ◽  
...  

2019 ◽  
Vol 235 (5) ◽  
pp. 4351-4360
Author(s):  
Matías D. Gómez‐Elías ◽  
Rafael A. Fissore ◽  
Patricia S. Cuasnicú ◽  
Débora J. Cohen

1996 ◽  
Vol 134 (2) ◽  
pp. 329-338 ◽  
Author(s):  
S S Vogel ◽  
P S Blank ◽  
J Zimmerberg

We have investigated the consequences of having multiple fusion complexes on exocytotic granules, and have identified a new principle for interpreting the calcium dependence of calcium-triggered exocytosis. Strikingly different physiological responses to calcium are expected when active fusion complexes are distributed between granules in a deterministic or probabilistic manner. We have modeled these differences, and compared them with the calcium dependence of sea urchin egg cortical granule exocytosis. From the calcium dependence of cortical granule exocytosis, and from the exposure time and concentration dependence of N-ethylmaleimide inhibition, we determined that cortical granules do have spare active fusion complexes that are randomly distributed as a Poisson process among the population of granules. At high calcium concentrations, docking sites have on average nine active fusion complexes.


1987 ◽  
Vol 87 (2) ◽  
pp. 205-220
Author(s):  
M. Charbonneau ◽  
D.J. Webb

At extracellular pH values close to their pKa values the weak bases, ammonia and procaine, elicited a series of events in non-activated Xenopus eggs, some of which resembled those normally occurring at fertilization. These included: (1) a transient increase in membrane conductance; (2) modification of the microvilli; (3) thickening of the cortical cytoplasm and displacement of the cortical granules; (4) pigment accumulation; (5) contractions and shape changes. However, these eggs did not undergo the cortical reaction nor emit the second polar body. Cortical granule exocytosis of inseminated or artificially stimulated eggs was inhibited if the eggs had been previously treated for 15 min with the weak base and subsequently rinsed. Multiple sperm-entry sites were exhibited by the inseminated eggs, suggesting polyspermy. However, such eggs did not cleave and although sperm had fused with the egg membrane, they were not incorporated. Nevertheless, a transient increase in membrane conductance was evoked, which was longer in duration and had a slightly different form from that normally accompanying fertilization. In these eggs cortical granules were intact but displaced away from the plasma membrane. Prolonged contact with the weak base rendered eggs totally unresponsive to sperm or artificial stimuli but eggs recovered when rinsed sufficiently. These effects of weak bases on unfertilized Xenopus eggs or during fertilization were completely absent at pH 7.4. Although changes in intracellular pH or Ca2+ may be involved in these phenomena, direct action by the weak base itself cannot be ruled out.


1998 ◽  
Vol 274 (6) ◽  
pp. C1496-C1500 ◽  
Author(s):  
Yoshihide Ikebuchi ◽  
Nobuyuki Masumoto ◽  
Tetsu Matsuoka ◽  
Takeshi Yokoi ◽  
Masahiro Tahara ◽  
...  

Synaptosome-associated protein of 25 kDa (SNAP-25) has been shown to play an important role in Ca2+-dependent exocytosis in neurons and endocrine cells. During fertilization, sperm-egg fusion induces cytosolic Ca2+mobilization and subsequently Ca2+-dependent cortical granule (CG) exocytosis in eggs. However, it is not yet clear whether SNAP-25 is involved in this process. In this study, we determined the expression and function of SNAP-25 in mouse eggs. mRNA and SNAP-25 were detected in metaphase II (MII) mouse eggs by RT-PCR and immunoblot analysis, respectively. Next, to determine the function of SNAP-25, we evaluated the change in CG exocytosis with a membrane dye, tetramethylammonium-1,6-diphenyl-1,3,5-hexatriene, after microinjection of a botulinum neurotoxin A (BoNT/A), which selectively cleaves SNAP-25 in MII eggs. Sperm-induced CG exocytosis was significantly inhibited in the BoNT/A-treated eggs. The inhibition was attenuated by coinjection of SNAP-25. These results suggest that SNAP-25 may be involved in Ca2+-dependent CG exocytosis during fertilization in mouse eggs.


Sign in / Sign up

Export Citation Format

Share Document