An Ultrastructural Study of the Differentiation of the Spermatozoid of Equisetum

1973 ◽  
Vol 12 (1) ◽  
pp. 95-129
Author(s):  
J. G. DUCKETT

The ultrastructure of spermatogenesis in Equisetum is described with particular reference to the origin and development of the multilayered structure (MLS) and nuclear metamorphosis. Simultaneously with the formation of centrioles, by the fragmentation of the blepharoplast, in young spermatids, the MLS appears in their vicinity. This comprises 4 layers recalling the Vierergruppe of bryophyte spermatids. The outer layer, or microtubular band, consists of juxtaposed microtubules. The three inner lamellar strata, which lie along the anterior edge of the microtubular band, are composed of parallel plates oriented at 35-45° to the axes of the microtubules. Keels are present on the microtubules where these overlie the lamellar layers. A mitochondrion lies subjacent to the lamellar layers and on the outer surface of the anterior edge of the microtubular band is a crest of osmiophilic material. The position of the osmiophilic crest suggests that it may have a role in microtubule synthesis. However, its persistence in the mature gametes after microtubular elongation has ceased, and its banded substructure, reminiscent of flagellar roots, perhaps indicate that its function is mainly mechanical in holding the microtubular band together. Approximately oval in shape and overlain by less than 50 short microtubules initially, the lamellar strata and subjacent mitochondrion rapidly increase in length. Eventually they form a strip 15-20 µm in length overlain by over 300 microtubules. This extensive microtubular band in Equisetum is more likely related to the final shape of the nucleus in the mature gamete than to the presence of numerous flagella. The entire MLS now becomes associated with the nucleus. The microtubular band is closely adpressed to the nuclear envelope and acts as a cytoskeletal framework along which the nucleus undergoes elongation and coiling. Initially the lamellar strip and mitochondrion run along the nuclear envelope with one of their edges touching it and the other projecting into the cytoplasm. However, continuous elongation of the microtubules throughout nuclear metamorphosis results in the gradual separation of the strip and mitochondrion beyond the anterior tip of the nucleus. Simultaneously, the posterior parts of the nucleus become ensheathed by rearward extension of the microtubular band. The centrioles arrange themselves in a single layer on the outer surface of the microtubular band and during the early stages of nuclear metamorphosis give rise to flagella from their distal ends, concomitantly undergoing differentiation into basal bodies. Intense Golgi activity during early and mid-spermatid stages is thought to be related to the accumulation of mucopolysaccharides between the cell wall and cell membrane. In the mid-spermatids rough endoplasmic reticulum is closely associated with the plastids which later accumulate starch, a characteristic feature of spermatogenesis in archegoniate plants.

Author(s):  
R. N. Tomas

Peridinium balticum appears to be unusual among the dinoflagellates in that it possesses two DNA-containing structures as determined by histochemical techniques. Ultrastructurally, the two dissimilar nuclei are contained within different protoplasts; one of the nuclei is characteristically dinophycean in nature, while the other is characteristically eucaryotic. The chloroplasts observed within P. balticum are intrinsic to an eucaryotic photosynthetic endosymbiont and not to the dinoflagellate. These organelles are surrounded by outpocketings of endoplasmic reticulum which are continuous with the eucaryotic nuclear envelope and are characterized by thylakoids composed of three apposed lamellae. Girdle lamellae and membranebounded interlamellar pyrenoids are also present. Only the plasmalemma of the endosymbiont segregates its protoplast from that of the dinophycean cytoplasm. The exact nature of this symbiotic relationship is at present not known.


1981 ◽  
Vol 49 (1) ◽  
pp. 401-409
Author(s):  
A.W. Coleman ◽  
P. Heywood

The arrangement and ultrastructure of chloroplasts is described for the Chloromonadophycean algae gonyostomum semen Diesing and Vacuolaria virescens Cienkowsky. The chloroplasts are present in large numbers and are discoid structures approximately 3–4 micrometer in length by 2–3 micrometer in width. In Gonyostomum semen the chloroplasts form a single layer immediately interior to the cell membrane; frequently their longitudinal axis parallels the longitudinal axis of the cell. The chloroplasts in Vacuolaria virescens are more than I layer deep and do not appear to be preferentially oriented. In both organisms, chloroplast bands usually consist of 3 apposed thylakoids, although fusion and interconnections between adjacent bands frequently occur. External to the girdle band (the outermost thylakoids) is the chloroplast envelope. This is bounded by endoplasmic reticulum but there is no immediately apparent continuity between this endoplasmic reticulum and the nuclear envelope. Electron-dense spheres in the chloroplast stroma are thought to be lipid food reserve. Ring-shaped electron-translucent regions in the chloroplast contain chloroplast DNA. The DNA is distributed along this ring in an uneven fashion and, when stained, resembles a string of beads. Each plastid has I ring, and the ring is unbroken in the intact plastid.


1959 ◽  
Vol 5 (3) ◽  
pp. 501-506 ◽  
Author(s):  
W. Gordon Whaley ◽  
Hilton H. Mollenhauer ◽  
Joyce E. Kephart

Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell.


The male gamete of Equisetum is the largest and structurally most complex of those so far known in living pteridophytes. The ultrastructure of the mature gametes, is described with particular reference to the influence of the multilayered structure (MLS) on its form. In Equisetum this organelle comprises a band of over 300 microtubules, underlain along its anterior edge by a lamellar strip, 15-20 µm in length, and forming a sinistral spiral of 2 1/2 gyres. The tubules extend from the strip, at an angle of about 40°, to form a broad sheath around the twisted pyriform nucleus located in the posterior half of the cell. From the anterior tip of the lamellar strip to the posterior end of the nucleus the gamete completes a helix of 3 1/2 gyres, traversed throughout by the microtubular band. As a result of growth of this band during spermatid metamorphosis, and the 40° angle between the elates of the lamellar strip and the microtubules, the strip is displaced anteriorly and laterally relative to the nucleus. In the mature gamete, although the strip and the nucleus remain interconnected by the microtubular band, only the posterior half of the strip lies directly above the anterior third of the nucleus. The precise interrelationship between nucleus and MLS is illustrated by reconstructions which display the spermatozoids as they would appear if uncoiled. The 80-120 flagella are inserted outside that part of the micro tubular band lying anterior to the nucleus. Their basal bodies retain the proximal cartwheel and stellate transition regions found already in spermatids, but in the mature gametes they are invested with collars of osmiophilic material. The axonemes depart at 10° tangentially from the helix and extend backwards parallel with the tubules of the microtubular band. In consequence of the overlapping gyres of the helix the flagella lie in a spiral groove, similar to that found in cycad spermatozoids. From this groove the plasma membrane closely follows the external surface of the microtubular band. Contrasting with other archegoniates, maximal structural differentiation of the MLS is found in the mature spermatozoid. Flat-bottomed keels are present on the microtubules overlying the lamellar strip in which three distinct strata can be recognized. The two outer, consisting of alternating plates of electron-opaque and electron- transparent material, are separated by a continuous electron-opaque sheet. The innermost stratum comprises a continuous layer of finely granular material. Overlying the external anterior rim of the microtubular band is an osmiophilic crest. This retains the regularly banded substructure found in spermatids, but in mature spermatozoids is far more prominent than at any other time during spermatogenesis. It contains an electron-transparent lumen and is continuous with both the anterior ends of the microtubules and the anteriormost lamellar plates. Between the inner gyres of the MLS the crest is confluent with extensive sheets of smooth endoplasmic reticulum. Underlying the lamellar strip is a spiral mitochondrion with prominent dilated cristae. The central cytoplasm contains at least 100 pleomorphic mitochondria, together with from 15 to 25 amyloplasts and a few microbodies. In the nucleus, in addition to condensed chromatin, are several spherical electron-opaque bodies and aggregations of membrane-bound vesicles. Structures identical in appearance with the former also occur in the cytoplasm, and it is suggested that they may be nuclear in origin, as are similar bodies in animal spermatogenesis. The vesicles may represent portions of redundant nuclear envelope whose extrusion into the cytoplasm was prevented by the ensheathing microtubular band. Pores are still present in the nuclear envelope, where this is not invested by the band. The mature spermatozoids are liberated from antheridia within mucilaginous sacs bounded by fibrillar cell wall material, thought to contain lipid droplets promoting their dispersal when in contact with water. On escaping from the sacs the spermatozoids elongate slightly, and profiles of disrupted flagella are frequently encountered. Occasionally the microtubular band ensheathing the posterior part of the nucleus also becomes disorganized. There is no evidence of the utilization of amyloplast starch as an energy source during motility, and, in contrast to ferns and bryophytes, there is no sequestration of the central cytoplasm by the swimming spermatozoids.


1966 ◽  
Vol 31 (1) ◽  
pp. 135-158 ◽  
Author(s):  
J. M. Bassot

Luminous cells of polynoid worm elytra have been examined by methods of electron microscopy, with special attention focused on the fine structure of photogenic grains. These cells send apical prolongations into the mid-part of the elytra. The plasma membrane is very sinuous, and a special kind of desmosome links two portions of the same membrane. In addition to all the organelles which can be found in nonluminescent epithelial cells of the elytra, numerous photogenic grains are contained in their cytoplasm. These grains are composed of undulating microtubules measuring 200 A in diameter; their disposition in the grain is highly regular, and the grains appear as paracrystals. At the borders of the grains, the walls of the microtubules are often in continuity with those of the endoplasmic reticulum and with the external membrane of the nuclear envelope. Because of this fact, the microtubules of the grains may be considered a cytoplasmic organelle, representing a specialized form of the endoplasmic reticulum. The microtubules permit the repartition, inside and outside their walls, of two different products, one being forty-three times more abundant than the other; thus, the contact surface, in comparison to the volume, is greatly increased. The induction of the luminous reaction by change in the permeability of the microtubule walls, allowing contact between the two substances, is suggested as a working hypothesis. There is an evolution of the grains along the axis of the photocytes. The grains are often surrounded by progressively increasing amounts of glycogen. Their paracrystalline disposition is altered at the apex of the luminous cells.


1970 ◽  
Vol 7 (2) ◽  
pp. 445-461
Author(s):  
I. B. HEATH ◽  
A. D. GREENWOOD ◽  
H. B. GRIFFITHS

The endoplasmic reticulum of Saprolegnia, Dictyuchus, Synura and Cryptomonas may contain tubules less than 20 nm in diameter. In Saprolegnia these tubules have a maximum length of 1.6 µm, a wall of a single layer of colchicine-resistant, osmiophilic subunits, and a tapering end-piece. Flimmer hairs (flagellar hairs) are morphologically similar and are attached to the flagellum sheath by a tapering end-piece. It is suggested that Flimmer hairs are produced in cisternae of the endoplasmic reticulum of the above organisms. Cryptomonas bears 2 rows of Flimmer hairs on one flagellum and a single row of shorter ones on the other.


Author(s):  
Janice E. Kuster

The fine structure of photopic eucone eyes of Cicindela tranquebarica adults was examined using cryofracture SEM, TEM, and freeze-etch techniques. A “subcorneal layer” can be distinguished between the corneal lens and crystalline cone. In surface view (Fig. 1) this layer consists of concave polygons (po). It has parabolic lamellae (lm) of endocuticle consisting of microfibrils (mf) having a chitin core with protein deposits along their lengths (Fig. 2). Two primary pigment cells (lp) are devoid of pigment granules, but are rich in rough endoplasmic reticulum (rer) and surround a crystalline thread (ct) (Fig. 3). Extensions of the crystalline thread form inter-retinular fibers (f) containing microtubules between retinula cells 1/2, 3/4, 5/6, and 7/1 (Figs. 4, 5).Distal to each retinula cell nucleus are two basal bodies (bb), one perpendicular to the other (Fig. 4). The proximal body extends two fibrillar feet which fuse to form a horizontally banded ciliary rootlet which extends the retinula length peripheral to the rhabdom.


1978 ◽  
Vol 30 (1) ◽  
pp. 265-281
Author(s):  
D.G. Myles

The ultrastructural details of fertilization in the fern Marsilea vestita, including gamete approach and fusion, the fate of the spermatozoid organelles and the development of a possible block to polyspermy are described. The spermatozoid approaches the egg through layers of mucilage that surround the megaspores. It moves down the neck of the archegonium into the cavity above the egg. In order to reach the egg, it must move through a small hole in the thick wall that lies across the top of the egg. The fusion of the plasma membranes of the gametes results in an outflow of egg cytoplasm into the clear space under the sperm plasma membrane, creating a fertilization cone. All the organelles of the fertilizing spermatozoid, including nucleus, mitochondrion, microtubule ribbon, multilayered structure, and flagellar band, with approximately 150 flagella, enter the egg cytoplasm. The nucleus enters as a condensed rod of chromatin with no nuclear envelope. The chromatin begins to disperse immediately and a new nuclear envelope is formed around the chromatin by egg endoplasmic reticulum. The mitochondrion and the microtubules of the ribbon and flagella are broken down, but the fates of the flagellar band and the multilayered structure have not been determined. After spermatozoid penetration, a new extracellular layer appears above the surface of the egg, beginning in the region of sperm penetration and spreading across the top of the egg. This layer may be important in preventing other spermatozoids from fusing with the egg.


1982 ◽  
Vol 60 (1) ◽  
pp. 26-33 ◽  
Author(s):  
J. C. Pendland ◽  
D. G. Boucias

Conidia in Nomuraea rileyi are produced basipetally from a phialide apex. Production of primary and all successive conidia appears to be enteroblastic, and only the inner, newly formed wall layer of the phialide surrounds developing conidia. Conidium formation ceases as layers of inner wall material accumulate at the phialide apex. In some cases, a pluglike structure resembling a Woronin body may cause cessation of conidiogenesis. Conidia are delimited by formation of a double septum. Since one half of the septum forms the base of the "older" conidium and the other half forms the apex of the next conidium, separation of successive conidia is schizolytic. Plasmalemmasomes, lomasomes, and smooth endoplasmic reticulum are often seen in association with septa and walls of conidiogenous cells. Transverse fibrils may be observed in some walls. Extensive vacuolization is common in older cells. Glycogen is present in conidiogenous cells and in conidia, which become very electron dense as they mature. An extranuclear plaque, an ascomycetous characteristic, may be observed on the nuclear envelope.


1979 ◽  
Vol 39 (1) ◽  
pp. 373-381 ◽  
Author(s):  
K.R. Katz ◽  
R.J. McLean

The ultrastructure of the flagellar apparatus of Chlamydomonas moewusii was examined in detail. Two rhizoplasts were found associated with the basal bodies of this biflagellate and were observed to extend to the central area of the cell. A segment of smooth endoplasmic reticulum ran parallel to each rhizoplast. These 2 segments anastomose beneath the basal bodies and the tubule proceeds over the top of the distal connecting fibre. A functional role for the smooth endoplasmic reticulum in these locations is discussed. Four sets of rootlet microtubules emanate from a region between the 2 basal bodies and the distal connecting fibre. Two sets have a three-over-one arrangement and the other 2 sets are doublets. Cytoplasmic microtubules were seen associated with possible nucleating sites on the rootlet microtubules. The association of the observed structures are discussed and compared to the flagellar apparatus of C. reinhardtii.


Sign in / Sign up

Export Citation Format

Share Document