scholarly journals A quantitative study of the Golgi retention of glycosyltransferases

2021 ◽  
Author(s):  
Xiuping Sun ◽  
Mahajan Divyanshu ◽  
Bing Chen ◽  
Zhiwei Song ◽  
Lei Lu

How Golgi glycosyltransferases and glycosidases (hereafter glycosyltransferases) localize to the Golgi is still unclear. Here, we first investigated the post-Golgi trafficking of glycosyltransferases. We found that glycosyltransferases can escape the Golgi to the plasma membrane, where they are subsequently endocytosed to the endolysosome. Post-Golgi glycosyltransferases are probably degraded by the ectodomain shedding. We discovered that most glycosyltransferases are not retrieved from post-Golgi sites, indicating that retention but not retrieval should be the primary mechanism for their Golgi localization. We proposed to use the Golgi residence time to quantitatively and systematically study Golgi retention of glycosyltransferases. Various swapping chimeras between ST6GAL1 and either transferrin receptor or tumor necrosis factor α quantitatively revealed the contributions of three regions of ST6GAL1, namely the N-terminal cytosolic tail, transmembrane domain, and ectodomain, to Golgi retention. We found that each of the three regions is sufficient to produce retention in an additive manner. The N-terminal cytosolic tail length negatively affects the Golgi retention of ST6GAL1, similar to the effect of the transmembrane domain. Therefore, the long N-terminal cytosolic tail and transmembrane domain can be a Golgi export signal for transmembrane secretory cargos.

2021 ◽  
Author(s):  
Xiuping Sun ◽  
Bing Chen ◽  
Zhiwei Song ◽  
Lei Lu

ABSTRACTHow Golgi glycosyltransferases and glycosidases (hereafter glycosyltransferases) localize to the Golgi is still unclear. Here, we first investigated the post-Golgi trafficking of glycosyltransferases. We found that glycosyltransferases can escape the Golgi to the plasma membrane, where they are subsequently endocytosed to the endolysosome. Post-Golgi glycosyltransferases are probably degraded by the ecto-domain shedding. We discovered that most glycosyltransferases are not retrieved from post-Golgi sites, indicating that retention but not retrieval should be the main mechanism for their Golgi localization. We proposed to use the Golgi residence time to study the Golgi retention of glycosyltransferases quantitatively and systematically. Various chimeras between ST6GAL1 and either transferrin receptor or tumor necrosis factor α quantitatively revealed the contributions of three regions of ST6GAL1, namely the N-terminal cytosolic tail, transmembrane domain and ecto-domain, to the Golgi retention. We found that each of the three regions is sufficient to produce a retention in an additive manner. The N-terminal cytosolic tail length negatively affects the Golgi retention of ST6GAL1, similar to what is known of the transmembrane domain. Therefore, long N-terminal cytosolic tail and transmembrane domain can be a Golgi export signal for transmembrane secretory cargos.


1999 ◽  
Vol 112 (21) ◽  
pp. 3603-3617 ◽  
Author(s):  
J. Schlondorff ◽  
C.P. Blobel

Metalloprotease-disintegrins (ADAMs) have captured our attention as key players in fertilization and in the processing of the ectodomains of proteins such as tumor necrosis factor (α) (TNF(α)), and because of their roles in Notch-mediated signaling, neurogenesis and muscle fusion. ADAMs are integral membrane glycoproteins that contain a disintegrin domain, which is related to snake-venom integrin ligands, and a metalloprotease domain (which can contain or lack a catalytic site). Here, we review and critically discuss current topics in the ADAMs field, including the central role of fertilin in fertilization, the role of the TNF(α) convertase in protein ectodomain processing, the role of Kuzbanian in Notch signaling, and links between ADAMs and processing of the amyloid-precursor protein.


2000 ◽  
Vol 275 (21) ◽  
pp. 15839-15844 ◽  
Author(s):  
Zili Zhang ◽  
Jay K. Kolls ◽  
Peter Oliver ◽  
David Good ◽  
Paul O. Schwarzenberger ◽  
...  

2010 ◽  
Vol 88 (6) ◽  
pp. 1201-1205 ◽  
Author(s):  
Anders Etzerodt ◽  
Maciej Bogdan Maniecki ◽  
Kirsten Møller ◽  
Holger Jon Møller ◽  
Søren Kragh Moestrup

Sign in / Sign up

Export Citation Format

Share Document