Syncytioskeletons in choriocarcinoma in culture

1984 ◽  
Vol 66 (1) ◽  
pp. 1-20
Author(s):  
C.D. Ockleford ◽  
L. Dearden ◽  
R.A. Badley

Indirect immunofluorescence microscopy using anti-actin serum has been used to investigate the distribution of actin-containing polymers in BeWo cells. This cell line, derived from a human choriocarcinoma, contains tissue that, like its tissue of origin, is partly syncytial. The syncytial nature has been inferred from study of Nomarski optical sections and from transmission electron microscopy. The multinucleated plaques of tissue possess a syncytioskeleton with a number of actin-containing features characteristic of cultured cells. These include stress fibres, cortical layers and ruffled membranes. Other actin-containing structures are more typical of the related non-pathological syncytiotrophoblast. These include a dense population of microvilli. The overall organization of the actin syncytioskeletons bears no obvious relationship to the number or position of nuclei in the syncytium. Indirect immunofluorescence microscopy has also been employed to localize the protein tubulin in BeWo cells. The microtubules do not appear to be spatially organized by a particular nucleus. Rather, there are numerous microtubule-organizing centres (MTOCs) that exist in the cytoplasm and do not have the expected numerical and positional relationship to nuclei. From these data it appears that polymeric cytoskeletal elements in these syncytia are organized in a manner not immediately subordinate to syncytial nuclei.

1980 ◽  
Vol 86 (1) ◽  
pp. 335-340 ◽  
Author(s):  
A Bretscher ◽  
K Weber

A 68,000 mol wt polypeptide has been identified as one of the few major proteins in the microfilament bundles of the microvilli present on intestinal epithelial cells. Antibodies against the purified protein have been used in indirect immunofluorescence microscopy on several cultured cells. The protein have been used in indirect immunofluorescence microscopy on several cultured cells. The protein is found particularly prominent in membrane ruffles, microspikes, and microvilli.


1983 ◽  
Vol 97 (2) ◽  
pp. 425-432 ◽  
Author(s):  
A Bretscher

The microvillus cytoskeleton, isolated from chicken intestinal epithelial cell brush borders, is known to contain five major protein components, the 110,000-dalton polypeptide, villin (95,000 daltons), fimbrin (68,000 daltons), actin (43,000 daltons), and calmodulin (17,000 daltons). In this paper we describe our first step in studying the minor components of the isolated core. We have so far identified and purified an 80,000-dalton polypeptide that was present in the isolated structure in approximately 0.7% the molar abundance of actin. Antibodies to the 80,000-dalton component did not react with other microvillus core proteins, and, when used in indirect immunofluorescence microscopy, they stained the microvilli of intestinal epithelial cells fixed in situ. The 80,000-dalton component therefore appears to be a newly-identified, authentic component of intestinal microvilli in vivo and of isolated microvillus cores. Immunological studies demonstrate that the 80,000-dalton component is widely distributed in nonmuscle cells. Indirect immunofluorescence microscopy reveals that it is particularly enriched in surface structures, such as blebs, microvilli, and retraction fibers of cultured cells.


Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2168-2173 ◽  
Author(s):  
DW Essex ◽  
K Chen ◽  
M Swiatkowska

Protein disulfide isomerase (PDI) is an enzyme that catalyzes the formation as well as the isomerization of disulfide bonds. In this study, antibodies against PDI were used to show PDI antigen on the platelet surface by indirect immunofluorescence microscopy and by flow cytometry. The platelets were not activated, as evidenced by the absence of staining by an antibody against P-selectin. Permeabilized platelets showed little cytosolic PDI by indirect immunofluorescence microscopy, suggesting that the majority of platelet PDI is localized to the platelet surface. PDI activity against “scrambled” RNase was shown with intact platelets. The activity was inhibited by inhibitors of PDI and by an antibody against PDI. Other blood cells showed little PDI. Platelet surface PDI may play a role in the various physiological and pathophysiologic processes in which platelets are involved.


Zygote ◽  
1993 ◽  
Vol 1 (3) ◽  
pp. 215-223 ◽  
Author(s):  
Hidehiko Shogomori ◽  
Kazuyoshi Chiba ◽  
Hideo Kubo ◽  
Motonori Hoshi

SummaryM5 ganglioside (NeuGcα2–6Glcβl-' Cer) is the predominant glycosphingolipid in sea urchin eggs. Distribution of M5 ganglioside was studied in unfertilised and fertilised eggs of the sea urchin Hemicentrotus pulcherrimus by indirect immunofluorescence microscopy. In the cortices of unfertilised eggs, anti-M5 antibody strongly stained the submembranous, polygonal and tubular network of endoplasmic reticulum that was revealed by a membrane-staining dye, DiIC18(3). In addition to the cortical network of endoplasmic reticulum, at least two morphologically distinct vesicles were positive to the antibody. In the cortices isolated from fertilised eggs 30 min after insemination, the antibody stained only a similar network of endoplasmic reticulum, presumably the one reconstructed 5–10 min after fertilisation. During mitosis the endoplasmic reticulum is known to aggregate within the asters of the mitotic apparatus. Indeed, the antibody stained the asters and (more strongly) the vesicular components attaching to the periphery of the mitotic apparatus.


1978 ◽  
Vol 79 (3) ◽  
pp. 839-845 ◽  
Author(s):  
A Bretscher ◽  
K Weber

Indirect immunofluorescence microscopy was used to localize microfilament-associated proteins in the brush border of mouse intestinal epithelial cells. As expected, antibodies to actin decorated the microfilaments of the microvilli, giving rise to a very intense fluorescence. By contrast, antibodies to myosin, tropomyosin, filamin, and alpha-actinin did not decorate the microvilli. All these antibodies, however, decorated the terminal web region of the brush border. Myosin, tropomyosin, and alpha-actinin, although present throughout the terminal web, were found to be preferentially located around the periphery of the organelle. Therefore, two classes of microfilamentous structures can be documented in the brush border. First, the highly ordered microfilaments which make up the cores of the microvilli apparently lack the associated proteins. Second, seemingly less-ordered microfilaments are found in the terminal web, in which region the myosin, tropomyosin, filamin and alpha-actinin are located.


Sign in / Sign up

Export Citation Format

Share Document