Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

1990 ◽  
Vol 95 (1) ◽  
pp. 177-183
Author(s):  
B. Van Duijn ◽  
S.A. Vogelzang ◽  
D.L. Ypey ◽  
L.G. Van der Molen ◽  
P.J. Van Haastert

We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be completely depolarized by two different methods: (1) by treatment with azide; this probably causes inhibition of the electrogenic proton pump, which was shown earlier to regulate plasma membrane potential in D. discoideum. (2) By electroporation, which causes the formation of large non-ion-selective pores in the plasma membrane. It was found that in depolarized cells the cyclic AMP-mediated cyclic AMP accumulation was inhibited. In contrast, chemotaxis to a cyclic AMP source was normal; the cyclic AMP-induced accumulation of cyclic GMP, which is known to mediate the chemotactic response, was also not affected. We conclude that membrane-potential-regulated processes, such as voltage-gated ion channels, do not play an essential role in chemotaxis in D. discoideum.

1995 ◽  
Vol 145 (3) ◽  
pp. 471-478 ◽  
Author(s):  
S McNulty ◽  
I L Schurov ◽  
P J Morgan ◽  
M H Hastings

Abstract Treatment of ovine pars tuberalis (oPT) cultures with forskolin activates adenylyl cyclase, leading to increased levels of cyclic AMP, activation of protein kinase A, phosphorylation of the calcium/cyclic AMP response-element binding protein and the increased synthesis and secretion of several proteins. Simultaneous treatment with melatonin inhibits or reverses these effects of forskolin. In the neonatal rat pituitary, the inhibitory effects of melatonin are mediated by changes in membrane potential. This study therefore investigated whether the inhibitory action of melatonin in oPT cultures is also dependent on the modulation of plasma membrane potential. Treatment of cultures with the ionophore valinomycin selectively permeabilised the cell plasma membrane to potassium, thereby causing membrane hyperpolarisation. In cultures of oPT, valinomycin inhibited in a concentration-dependent manner (maximal effect 2 μm) the stimulatory action of forskolin (1 μm) on intracellular levels of cyclic AMP, indicating that the activity of adenylyl cyclase in this tissue is sensitive to hyperpolarisation of the plasma membrane. However, increasing the extracellular concentration of potassium from 5 mm to 100 mm, which would depolarise the plasma membrane, had no effect on the inhibitory action of melatonin (1 μm) in forskolin-stimulated cultures. This indicated that melatonin could be effective in cells with sustained depolarisation. To test directly whether integrity of the plasma membrane is essential for melatonin to inhibit adenylyl cyclase, cultures were treated with the cholesterol-chelating agent saponin (50 μg/ml). Saponin increased cellular permeability to trypan blue and enhanced the release of the cytoplasmic enzyme lactate dehydrogenase to the extracellular medium, demonstrating that cell plasma membranes had been permeabilised, thereby abolishing membrane polarity. In cultures pretreated with saponin there was a tendency for levels of cyclic AMP to be reduced. However, permeabilisation did not block the forskolin-stimulated increases in cyclic AMP levels nor did it alter the ability of melatonin to inhibit the production of cyclic AMP in forskolin-stimulated cultures. This study demonstrated that, while it is possible to inhibit the stimulatory actions of forskolin in the oPT by increasing the permeability of cells to potassium and thereby hyperpolarising them, melatonin is able to inhibit cyclic AMP in permeabilised cells and so can act independently of changes in membrane potential. Journal of Endocrinology (1995) 145, 471–478


1988 ◽  
Vol 8 (6) ◽  
pp. 571-577 ◽  
Author(s):  
Vidyanand Nanjundiah

Aggregation in the cellular slime mold Dictyostelium discoideum is due to chemotaxis. The chemoattractant, cyclic AMP, is synthesised and released periodically by the cells. Externally applied periodic pulses of cyclic AMP can also induce differentiation in this organism. The present work examines the role of periodicity per se in cyclic AMP-mediated stimulation of cell differentiation. For this purpose we use Agip53, a Dictyostelium mutant which does not develop beyond the vegetative state but can be made to aggregate and differentiate by reiterated applications of cyclic AMP. Importantly, Agip53 cells do not make or release any cyclic AMP themselves even in response to an increase in extracellular cyclic AMP. A comparison of the relative efficiencies of periodic and aperiodic stimulation shows that whereas the two patterns of stimulation are equally effective in inducing the formation of EDTA-stable cell contacts, periodic stimuli are significantly superior for inducing terminal differentiation. This suggests that there must be molecular pathways which can only function when stimulation occurs at regular intervals.


Sign in / Sign up

Export Citation Format

Share Document