cell plasma membrane
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 38)

H-INDEX

45
(FIVE YEARS 3)

Author(s):  
Yuko Takagi ◽  
Mari Sato ◽  
Masami Naya ◽  
Chikara Sato

Using Atmospheric Scanning Electron Microscopy (ASEM), we visualized interaction between infectious stage of Trypanosoma cruzi and completely intact host mammalian cell. Plasma membrane appears translucent under ASEM, which not only enables direct observation of T. cruzi within its host cell, but also reveals internal structures of the parasite itself.


2021 ◽  
Author(s):  
Pirko Jalakas ◽  
Maris Nuhkat ◽  
Triin Vahisalu ◽  
Ebe Merilo ◽  
Mikael Brosché ◽  
...  

2021 ◽  
Author(s):  
Fumihiko Ogasawara ◽  
Kazumitsu Ueda

AbstractCholesterol is a major and essential component of the mammalian cell plasma membrane (PM) and the loss of cholesterol homeostasis leads to various pathologies. Cellular cholesterol uptake and synthesis are regulated by a cholesterol sensor in the endoplasmic reticulum (ER). However, it remains unclear how the PM cholesterol level is sensed. Here we show that the sensing depends on ATP-binding cassette A1 (ABCA1) and Aster-A, which cooperatively maintain the asymmetric transbilayer cholesterol distribution in the PM. ABCA1 translocates (flops) cholesterol from the inner to the outer leaflet of the PM to maintain a low inner cholesterol level. When the inner cholesterol level exceeds a threshold, Aster-A is recruited to the PM-ER contact site to transfer cholesterol to the ER. These results show unknown synergy between ABCA1 and Aster-A in intracellular cholesterol homeostasis.


2021 ◽  
Vol 28 ◽  
pp. 101174
Author(s):  
Sheila Figel ◽  
Meaghan Birkemeier ◽  
Sanam Sahjram Dharma ◽  
Tara Barone ◽  
Emma Steinmetz ◽  
...  

2021 ◽  
Vol 220 (12) ◽  
Author(s):  
George Maxwell Otto ◽  
Tia Cheunkarndee ◽  
Jessica Mae Leslie ◽  
Gloria Ann Brar

The endoplasmic reticulum (ER) carries out essential and conserved cellular functions, which depend on the maintenance of its structure and subcellular distribution. Here, we report developmentally regulated changes in ER morphology and composition during budding yeast meiosis, a conserved differentiation program that gives rise to gametes. A subset of the cortical ER collapses away from the plasma membrane at anaphase II, thus separating into a spatially distinct compartment. This programmed collapse depends on the transcription factor Ndt80, conserved ER membrane structuring proteins Lnp1 and reticulons, and the actin cytoskeleton. A subset of ER is retained at the mother cell plasma membrane and excluded from gamete cells via the action of ER–plasma membrane tethering proteins. ER remodeling is coupled to ER degradation by selective autophagy, which relies on ER collapse and is regulated by timed expression of the autophagy receptor Atg40. Thus, developmentally programmed changes in ER morphology determine the selective degradation or inheritance of ER subdomains by gametes.


Immuno ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 332-346
Author(s):  
Yu Liu ◽  
Jeffrey A. Sigman ◽  
Lisa A. Bruce ◽  
Adele J. Wolfson

Peptidases generate bioactive peptides that can regulate cell signaling and mediate intercellular communication. While the processing of peptide precursors is initiated intracellularly, some modifications by peptidases may be conducted extracellularly. Thimet oligopeptidase (TOP) is a peptidase that processes neuroendocrine peptides with roles in mood, metabolism, and immune responses, among other functions. TOP also hydrolyzes angiotensin I to angiotensin 1–7, which may be involved in the pathophysiology of COVID-19 infection. Although TOP is primarily cytosolic, it can also be associated with the cell plasma membrane or secreted to the extracellular space. Recent work indicates that membrane-associated TOP can be released with extracellular vesicles (EVs) to the extracellular space. Here we briefly summarize the enzyme’s classical function in extracellular processing of neuroendocrine peptides, as well as its more recently understood role in intracellular processing of various peptides that impact human diseases. Finally, we discuss new findings of EV-associated TOP in the extracellular space.


Author(s):  
Balindile B. Motsa ◽  
Robert V. Stahelin

Lipid enveloped viruses contain a lipid bilayer coat that protects their genome to help facilitate entry into the new host cell. This lipid bilayer comes from the host cell which they infect. After viral replication, the mature virion hijacks the host cell plasma membrane where it is then released to infect new cells. This process is facilitated by the interaction between phospholipids that make up the plasma membrane and specialized viral matrix proteins. This step in the viral lifecycle may represent a viable therapeutic strategy for small molecules that aim to block enveloped virus spread. In this review, we summarize the current knowledge on the role of plasma membrane lipid–protein interactions on viral assembly and budding.


2021 ◽  
pp. 247255522110302
Author(s):  
Mariafrancesca Scalise ◽  
Lara Console ◽  
Jessica Cosco ◽  
Lorena Pochini ◽  
Michele Galluccio ◽  
...  

The SLC1 family includes seven members divided into two groups, namely, EAATs and ASCTs, that share similar 3D architecture; the first one includes high-affinity glutamate transporters, and the second one includes SLC1A4 and SLC1A5, known as ASCT1 and ASCT2, respectively, responsible for the traffic of neutral amino acids across the cell plasma membrane. The physiological role of ASCT1 and ASCT2 has been investigated over the years, revealing different properties in terms of substrate specificities, affinities, and regulation by physiological effectors and posttranslational modifications. Furthermore, ASCT1 and ASCT2 are involved in pathological conditions, such as neurodegenerative disorders and cancer. This has driven research in the pharmaceutical field aimed to find drugs able to target the two proteins. This review focuses on structural, functional, and regulatory aspects of ASCT1 and ASCT2, highlighting similarities and differences.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 447
Author(s):  
Raju Timsina ◽  
Laxman Mainali

α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: 1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and 2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens’s fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.


Sign in / Sign up

Export Citation Format

Share Document