The inhibitory action of melatonin in the ovine pars tuberalis is not dependent on changes in plasma membrane potential

1995 ◽  
Vol 145 (3) ◽  
pp. 471-478 ◽  
Author(s):  
S McNulty ◽  
I L Schurov ◽  
P J Morgan ◽  
M H Hastings

Abstract Treatment of ovine pars tuberalis (oPT) cultures with forskolin activates adenylyl cyclase, leading to increased levels of cyclic AMP, activation of protein kinase A, phosphorylation of the calcium/cyclic AMP response-element binding protein and the increased synthesis and secretion of several proteins. Simultaneous treatment with melatonin inhibits or reverses these effects of forskolin. In the neonatal rat pituitary, the inhibitory effects of melatonin are mediated by changes in membrane potential. This study therefore investigated whether the inhibitory action of melatonin in oPT cultures is also dependent on the modulation of plasma membrane potential. Treatment of cultures with the ionophore valinomycin selectively permeabilised the cell plasma membrane to potassium, thereby causing membrane hyperpolarisation. In cultures of oPT, valinomycin inhibited in a concentration-dependent manner (maximal effect 2 μm) the stimulatory action of forskolin (1 μm) on intracellular levels of cyclic AMP, indicating that the activity of adenylyl cyclase in this tissue is sensitive to hyperpolarisation of the plasma membrane. However, increasing the extracellular concentration of potassium from 5 mm to 100 mm, which would depolarise the plasma membrane, had no effect on the inhibitory action of melatonin (1 μm) in forskolin-stimulated cultures. This indicated that melatonin could be effective in cells with sustained depolarisation. To test directly whether integrity of the plasma membrane is essential for melatonin to inhibit adenylyl cyclase, cultures were treated with the cholesterol-chelating agent saponin (50 μg/ml). Saponin increased cellular permeability to trypan blue and enhanced the release of the cytoplasmic enzyme lactate dehydrogenase to the extracellular medium, demonstrating that cell plasma membranes had been permeabilised, thereby abolishing membrane polarity. In cultures pretreated with saponin there was a tendency for levels of cyclic AMP to be reduced. However, permeabilisation did not block the forskolin-stimulated increases in cyclic AMP levels nor did it alter the ability of melatonin to inhibit the production of cyclic AMP in forskolin-stimulated cultures. This study demonstrated that, while it is possible to inhibit the stimulatory actions of forskolin in the oPT by increasing the permeability of cells to potassium and thereby hyperpolarising them, melatonin is able to inhibit cyclic AMP in permeabilised cells and so can act independently of changes in membrane potential. Journal of Endocrinology (1995) 145, 471–478

1990 ◽  
Vol 95 (1) ◽  
pp. 177-183
Author(s):  
B. Van Duijn ◽  
S.A. Vogelzang ◽  
D.L. Ypey ◽  
L.G. Van der Molen ◽  
P.J. Van Haastert

We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be completely depolarized by two different methods: (1) by treatment with azide; this probably causes inhibition of the electrogenic proton pump, which was shown earlier to regulate plasma membrane potential in D. discoideum. (2) By electroporation, which causes the formation of large non-ion-selective pores in the plasma membrane. It was found that in depolarized cells the cyclic AMP-mediated cyclic AMP accumulation was inhibited. In contrast, chemotaxis to a cyclic AMP source was normal; the cyclic AMP-induced accumulation of cyclic GMP, which is known to mediate the chemotactic response, was also not affected. We conclude that membrane-potential-regulated processes, such as voltage-gated ion channels, do not play an essential role in chemotaxis in D. discoideum.


2016 ELEKTRO ◽  
2016 ◽  
Author(s):  
Martina Krutakova ◽  
Tatiana Matakova ◽  
Erika Halasova ◽  
Miroslava Sarlinova ◽  
Pavol Spanik ◽  
...  

2019 ◽  
Vol 33 (9) ◽  
pp. 9785-9796 ◽  
Author(s):  
Takuro Numaga‐Tomita ◽  
Tsukasa Shimauchi ◽  
Sayaka Oda ◽  
Tomohiro Tanaka ◽  
Kazuhiro Nishiyama ◽  
...  

1981 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
M L Pall ◽  
J M Trevillyan ◽  
N Hinman

Strains of Neurospora crassa mutant in either of two genes, Crisp-1 (cr1) and Frost (fr), showed no increase of cyclic adenosine 3',5'-monophosphate (cyclic AMP) levels when subjected to several treatments which produce large increases of cyclic AMP in wild-type Neurospora. Evidently, the previously reported deficiencies of adenylate cyclase in these mutants were sufficient to block the normal increases. This fact suggests that both mutants could be used to help determine which control phenomena involve cyclic AMP and to interrupt the control of established cyclic AMP-regulated functions. Earlier studies had suggested an interdependence of the cyclic AMP level and the electric potential difference across the plasma membrane of Neurospora. Present experiments, therefore, employed several strains with the cr1 mutation to test for possible roles of cyclic AMP in recovery and oscillatory behavior of the Neurospora membrane potential. The results showed all such phenomena to be normal in the adenylate cyclase-defective strains, which demonstrates that variations of cyclic AMP are not obligatorily involved in the apparent control processes. Evidence is also presented that the induction of both glucose transport system II and the alternative oxidase do not require elevated cyclic AMP levels.


1996 ◽  
Vol 314 (2) ◽  
pp. 595-601 ◽  
Author(s):  
Fabienne DEFRISE-QUERTAIN ◽  
Chantal FRASER-L'HOSTIS ◽  
Danièle CORAL ◽  
Jacques DESHUSSES

The characteristics of the plasma-membrane potential of procyclic and bloodstream forms of Trypanosoma brucei brucei (cultured cells) were investigated using the fluorescent anionic probe bisoxonol. Observation of a stable and representative plasma-membrane potential in the resting state required careful washing, centrifugation and maintenance of the cells at room temperature before measurement. Bloodstream forms were more prone to depolarization during washing at 4 °C than procyclic cells. The higher fluorescence observed in the presence of long slender cells than in the presence of procyclic cells shows that the plasma-membrane potential is more negative in the insect form. Healthy dilute cells can sustain their plasma-membrane potential for hours in the presence of external glucose. The presence of a high K+ concentration in the medium did not promote by itself the depolarization of either type of cell. Study of bisoxonol fluorescence as a function of time allowed us to follow the kinetics of the action of metabolic inhibitors in the presence of various ions. o-Vanadate (1 mM) was found to depolarize bloodstream-form cells rapidly but only in a phosphate-free NaCl buffer. Omeprazole and strophanthidin also specifically depolarized bloodstream-form trypanosomes. However, NN´-dicyclohexylcarbodi-imide depolarized both types of cell, but more rapidly for bloodstream-form cells. Bloodstream-form trypanosomes appear to use mainly a vanadate-sensitive Na+ pump to maintain their Na+-diffusion gradient. However, most of the ATPase inhibitors tested had little or no effect on the plasma-membrane potential of procyclics suggesting that this form of trypanosome may rely on several regulation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document