Macrophage heterogeneity in bone marrow culture in vitro

1990 ◽  
Vol 95 (3) ◽  
pp. 481-485
Author(s):  
M. Mori ◽  
Y. Sadahira ◽  
S. Kawasaki ◽  
T. Hayashi ◽  
M. Awai

Macrophages in mouse bone marrow cultures were investigated with macrophage-specific monoclonal antibody F4/80 and anti-Forssman glycosphingolipid (GSL) antibody, which was specific for macrophages in hematopoietic foci. Antibody F4/80 stained two types of cells, small macrophages and large flat macrophages associated with hematopoietic cells. The cytochemical and phagocytotic characteristics were similar between these two types of cells, but Forssman GSL was positive only for the large flat macrophages associated with hematopoietic cells. The data suggest that Forssman GSL positive macrophages, derived from resident bone marrow macrophages, play an important role in hematopoiesis and are clearly distinguished from small macrophages in vitro.

1989 ◽  
Vol 9 (9) ◽  
pp. 3973-3981 ◽  
Author(s):  
G V Borzillo ◽  
C J Sherr

Murine long-term bone marrow cultures that support B-lymphoid-cell development were infected with a helper-free retrovirus containing the v-fms oncogene. Infection of B-lymphoid cultures resulted in the rapid clonal outgrowth of early pre-B cells, which grew to high cell densities on stromal cell feeder layers, expressed v-fms-coded glycoproteins, and underwent immunoglobulin heavy-chain gene rearrangements. Late-passage cultures gave rise to factor-independent variants that proliferated in the absence of feeder layers, developed resistance to hydrocortisone, and became tumorigenic in syngeneic mice. The v-fms oncogene therefore recapitulates known effects of the v-abl and bcr-abl oncogenes on B-lineage cells. The ability of v-fms to induce transformation of early pre-B cells in vitro underscores the capacity of oncogenic mutants of the colony-stimulating factor-1 receptor to function outside the mononuclear phagocyte lineage.


1989 ◽  
Vol 9 (9) ◽  
pp. 3973-3981
Author(s):  
G V Borzillo ◽  
C J Sherr

Murine long-term bone marrow cultures that support B-lymphoid-cell development were infected with a helper-free retrovirus containing the v-fms oncogene. Infection of B-lymphoid cultures resulted in the rapid clonal outgrowth of early pre-B cells, which grew to high cell densities on stromal cell feeder layers, expressed v-fms-coded glycoproteins, and underwent immunoglobulin heavy-chain gene rearrangements. Late-passage cultures gave rise to factor-independent variants that proliferated in the absence of feeder layers, developed resistance to hydrocortisone, and became tumorigenic in syngeneic mice. The v-fms oncogene therefore recapitulates known effects of the v-abl and bcr-abl oncogenes on B-lineage cells. The ability of v-fms to induce transformation of early pre-B cells in vitro underscores the capacity of oncogenic mutants of the colony-stimulating factor-1 receptor to function outside the mononuclear phagocyte lineage.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 686-690
Author(s):  
Y Modai ◽  
R Oren ◽  
A de Vries ◽  
A Kohn

SummaryIntraperitoneal infection of guinea pigs with Encephalomyocarditis (EMC) virus led to viremia 2-10 days after infection and to paralysis and death of some of the infected animals. During the course of infection there was marked leucocytosis and thrombocytopenia. No abnormalities were detected in megakaryocytes in bone marrow cultures from infected guinea pigs. Exposure of guinea pig bone marrow culture to EMC virus in vitro impaired granulation and disintegration of megakaryocytes to platelets.


1972 ◽  
Vol 135 (3) ◽  
pp. 476-490 ◽  
Author(s):  
Kunie Nakamura

An in vitro proliferative system for immunoglobulin-G-forming plasma cells from the bone marrow of mice was established by the addition of antigenic protein and thymic cells or their homogenate to bone marrow cultures. The promoting activity of the thymus on plasma cells was independent from mouse strain, but it differed in strength with the variations of donor strains. Synthesis of immunoglobulin-G in proliferating plasma cells and its antibody reactivity against the administered antigen were demonstrated by immunocytological analyses.


1982 ◽  
Vol 30 (3) ◽  
pp. 235-244 ◽  
Author(s):  
U Reincke ◽  
P Hsieh ◽  
P Mauch ◽  
S Hellman ◽  
L B Chen

The formation of fibronectin matrix was studied in long-term mouse bone marrow cultures. Stromal and hematopoietic cells were observed in situ under phase contrast optics and quantified according to their staining characteristics on smear preparations. Surface fibronectin was demonstrated by indirect immunofluorescence. While only stromal and no hematopoietic cells participated, various stromal cell types differed in their expression of cell surface fibronectin: Reticulum cells contributed the major portion of fibronectin matrix. Elongated, meshwork-forming histiocytes expressed some surface fibronectin, while the flattened, macrophagic histiocytes remained fibronectin negative. These findings were recapitulated during regeneration of scrape wounds in the adherent layers. Isolated fibronectin matrix did not support hematopoietic cell adherence or maintenance, although it had marked effects on stromal cells.


1979 ◽  
Author(s):  
K. L. Kellar ◽  
B. L. Evatt ◽  
C. R. McGrath ◽  
R. B. Ramsey

Liquid cultures of bone marrow cells enriched for megakaryocytes were assayed for incorporation of 3H-thymidine (3H-TdR) into acid-precipitable cell digests to determine the effect of thrombopoietin on DNA synthesis. As previously described, thrombopoietin was prepared by ammonium sulfate fractionation of pooled plasma obtained from thrombocytopenic rabbits. A control fraction was prepared from normal rabbit plasma. The thrombopoietic activity of these fractions was determined in vivo with normal rabbits as assay animals and the rate of incorporation of 75Se-selenomethionine into newly formed platelets as an index of thrombopoietic activity of the infused material. Guinea pig megakaryocytes were purified using bovine serum albumin gradients. Bone marrow cultures containing 1.5-3.0x104 cells and 31%-71% megakaryocytes were incubated 18 h in modified Dulbecco’s MEM containing 10% of the concentrated plasma fractions from either thrombocytopenic or normal rabbits. In other control cultures, 0.9% NaCl was substituted for the plasma fractions. 3H-TdR incorporation was measured after cells were incubated for 3 h with 1 μCi/ml. The protein fraction containing thrombopoietin-stimulating activity caused a 25%-31% increase in 3H-TdR incorporation over that in cultures which were incubated with the similar fraction from normal plasma and a 29% increase over the activity in control cultures to which 0.9% NaCl had been added. These data suggest that thrombopoietin stimulates DNA synthesis in megakaryocytes and that this tecnique may be useful in assaying thrombopoietin in vitro.


Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3774-3784 ◽  
Author(s):  
F Morel ◽  
SJ Szilvassy ◽  
M Travis ◽  
B Chen ◽  
A Galy

The CD34 antigen is expressed on most, if not all, human hematopoietic stem cells (HSCs) and hematopoietic progenitor cells, and its use for the enrichment of HSCs with repopulating potential is well established. However, despite homology between human and murine CD34, its expression on subsets of primitive murine hematopoietic cells has not been examined in full detail. To address this issue, we used a novel monoclonal antibody against murine CD34 (RAM34) to fractionate bone marrow (BM) cells that were then assayed in vitro and in vivo with respect to differing functional properties. A total of 4% to 17% of murine BM cells expressed CD34 at intermediate to high levels, representing a marked improvement over the resolution obtained with previously described polyclonal anti-CD34 antibodies. Sixty percent of CD34+ BM cells lacked lineage (Lin) markers expressed on mature lymphoid or myeloid cells. Eighty-five percent of Sca-1+Thy-1(10)Lin- /10 cells that are highly enriched in HSCs expressed intermediate, but not high, levels of CD34 antigen. The remainder of these phenotypically defined stem cells were CD34-. In vitro colony-forming cells, day-8 and -12 spleen colony-forming units (CFU-S), primitive progenitors able to differentiate into B lymphocytes in vitro or into T lymphocytes in SCID mice, and stem cells with radioprotective and competitive long-term repopulating activity were all markedly enriched in the CD34+ fraction after single-parameter cell sorting. In contrast, CD34-BM cells were depleted of such activities at the cell doses tested and were capable of only short-term B-cell production in vitro. The results indicate that a significant proportion of murine HSCs and multilineage progenitor cells express detectable levels of CD34, and that the RAM34 monoclonal antibody is a useful tool to subset primitive murine hematopoietic cells. These findings should facilitate more direct comparisons of the biology of CD34+ murine and human stem and progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document