Cell density affects spreading and clustering, but not attachment, of human keratinocytes in serum-free medium

1991 ◽  
Vol 99 (2) ◽  
pp. 387-395
Author(s):  
M. Malcovati ◽  
M.L. Tenchini

Attachment, spreading and clustering of second-passage human human keratinocytes in serum-free medium have been evaluated within 24 h after plating, as a function of the density of the inoculum and of time, in two different strains. The results show that attachment is unaffected by cell density and differs significantly from strain to strain. Cell density affects the distribution of attached keratinocytes among three morphologically distinct classes: unspread, spread and clustered cells. The percentage of unspread keratinocytes shows a linear decrease at increasing cell density, and that of spread keratinocytes an increase, resulting from statistically significant increases in the percentages of both single and clustered cells. Spreading on uncoated surfaces appears therefore as an inducible phenomenon. The use of media conditioned by keratinocytes, fibroblasts and HeLa cells shows that keratinocytes specifically secrete a diffusible ‘spreading factor’. We term this phenomenon ‘autocrine induced spreading’. Preliminary physicochemical characterization suggests that a protein could be responsible for the spreading activity of conditioned media. The ‘spreading factor’ seems to act directly on the cells, and not through a modification of the plastic surface of the dishes, since most (greater than 70%) of the spreading activity can be recovered in the conditioned media used in pre-coating experiments. The percentages of clusters follow ‘saturation’ kinetics at increasing cell density, while the percentage of clustered cells increases linearly with the density of inoculum. Time-course experiments show that the rate of spreading is cell density- and strain-independent. The percentages of clusters and of total clustered cells are time-independent, suggesting that cluster formation takes place in suspension.(ABSTRACT TRUNCATED AT 250 WORDS)

2008 ◽  
Vol 30 (11) ◽  
pp. 1931-1936 ◽  
Author(s):  
Yong Kwon Lee ◽  
Seung Yeul Kim ◽  
Ki Heon Kim ◽  
Bok-Hwan Chun ◽  
Kweon-Haeng Lee ◽  
...  

1995 ◽  
Vol 268 (6) ◽  
pp. C1512-C1519 ◽  
Author(s):  
J. G. Chen ◽  
A. B. Strawbridge ◽  
S. A. Kempson

This study has focused on the possible influence of microtubules for the regulation of Na(+)-dependent system A neutral amino acid transport in A10 cells, a cultured cell line derived from rat aortic vascular smooth muscle. When microtubules were disrupted by incubating cells for 5 h in serum-free medium containing colchicine, nocodazole, or vinblastine, there was a twofold increase in system A transport (Vmax change). The dose for the disruption of microtubules by colchicine was similar to the dose required for the stimulation of system A. The time course showed that system A stimulation did not occur until widespread disruption of microtubules was established. The stimulation was specific for system A; there were no changes in glucose transport and Na(+)-dependent transport of phosphate and glutamate. Serum refeeding of quiescent cells from 2 days of serum starvation led to stimulation of system A, glucose, and phosphate transport. However, only system A was activated when colchicine was added to the serum-free medium. Addition of colchicine during serum refeeding had no additive effect for the stimulation of system A. The stimulation by both colchicine and serum was blocked by cycloheximide and actinomycin D. These findings suggest that microtubule disruption may activate system A gene expression.


Sign in / Sign up

Export Citation Format

Share Document