scholarly journals Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males

2006 ◽  
Vol 209 (20) ◽  
pp. 3964-3973 ◽  
Author(s):  
D. G. Folk ◽  
P. Zwollo ◽  
D. M. Rand ◽  
G. W. Gilchrist
Open Biology ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 160224 ◽  
Author(s):  
S. Yu Funikov ◽  
S. S. Ryazansky ◽  
A. A. Kanapin ◽  
M. D. Logacheva ◽  
A. A. Penin ◽  
...  

The genome expression pattern is strongly modified during the heat shock response (HSR) to form an adaptive state. This may be partly achieved by modulating microRNA levels that control the expression of a great number of genes that are embedded within the gene circuitry. Here, we investigated the cross-talk between two highly conserved and universal house-keeping systems, the HSR and microRNA machinery, in Drosophila melanogaster . We demonstrated that pronounced interstrain differences in the microRNA levels are alleviated after heat shock (HS) to form a uniform microRNA pattern. However, individual strains exhibit different patterns of microRNA expression during the course of recovery. Importantly, HS-regulated microRNAs may target functionally similar HS-responsive genes involved in the HSR. Despite the observed general downregulation of primary microRNA precursor expression as well as core microRNA pathway genes after HS, the levels of many mature microRNAs are upregulated. This indicates that the regulation of miRNA expression after HS occurs at transcriptional and post-transcriptional levels. It was also shown that deletion of all hsp70 genes had no significant effect on microRNA biogenesis but might influence the dynamics of microRNA expression during the HSR.


1983 ◽  
Vol 3 (11) ◽  
pp. 2017-2027 ◽  
Author(s):  
A S Olsen ◽  
D F Triemer ◽  
M M Sanders

A basic ribosomal phosphoprotein of 30,000 molecular weight was rapidly dephosphorylated in cultured Drosophila melanogaster cells heat shocked at 37 degrees C. The protein was associated with the 40S ribosomal subunit and had an electrophoretic mobility similar to that of purified rat liver protein S6 on basic two-dimensional polyacrylamide gels as well as a similar partial proteolysis peptide map. In logarithmically growing cultures, this D. melanogaster S6 protein appeared to have a single phosphorylated species consisting of 30 to 40% of the total cellular S6. Thus, the nearly complete dephosphorylation of this protein observed in heat shock involves a large fraction of the cellular S6. The significance of this dephosphorylation in the expression of the heat shock response was investigated by examining the phosphorylation status of S6 in recovery from heat shock and in response to chemical inducers of the heat shock response. During recovery from a 30-min heat shock, the recovery of normal protein synthesis was almost complete in 2 to 4 hr, whereas there was no significant rephosphorylation of S6 for 8 h. Two chemical inducers of the heat shock response, canavanine and sodium arsenite, induced the synthesis of heat shock proteins in D. melanogaster cells. Sodium arsenite also caused an inhibition of normal protein synthesis similar to that observed in heat shock. Neither agent, however, caused significant dephosphorylation of S6. These results suggest that the dephosphorylation of S6, although invariably observed in heat-shocked cells, may in some cases be dissociated from both the induction of heat shock protein synthesis and the turnoff of normal protein synthesis which occur in a heat shock response.


1983 ◽  
Vol 3 (11) ◽  
pp. 2017-2027
Author(s):  
A S Olsen ◽  
D F Triemer ◽  
M M Sanders

A basic ribosomal phosphoprotein of 30,000 molecular weight was rapidly dephosphorylated in cultured Drosophila melanogaster cells heat shocked at 37 degrees C. The protein was associated with the 40S ribosomal subunit and had an electrophoretic mobility similar to that of purified rat liver protein S6 on basic two-dimensional polyacrylamide gels as well as a similar partial proteolysis peptide map. In logarithmically growing cultures, this D. melanogaster S6 protein appeared to have a single phosphorylated species consisting of 30 to 40% of the total cellular S6. Thus, the nearly complete dephosphorylation of this protein observed in heat shock involves a large fraction of the cellular S6. The significance of this dephosphorylation in the expression of the heat shock response was investigated by examining the phosphorylation status of S6 in recovery from heat shock and in response to chemical inducers of the heat shock response. During recovery from a 30-min heat shock, the recovery of normal protein synthesis was almost complete in 2 to 4 hr, whereas there was no significant rephosphorylation of S6 for 8 h. Two chemical inducers of the heat shock response, canavanine and sodium arsenite, induced the synthesis of heat shock proteins in D. melanogaster cells. Sodium arsenite also caused an inhibition of normal protein synthesis similar to that observed in heat shock. Neither agent, however, caused significant dephosphorylation of S6. These results suggest that the dephosphorylation of S6, although invariably observed in heat-shocked cells, may in some cases be dissociated from both the induction of heat shock protein synthesis and the turnoff of normal protein synthesis which occur in a heat shock response.


Sign in / Sign up

Export Citation Format

Share Document