Faculty Opinions recommendation of Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase.

Author(s):  
Robert K Herman
2015 ◽  
Vol 25 (2) ◽  
pp. 163-174 ◽  
Author(s):  
Marcus C. Tatum ◽  
Felicia K. Ooi ◽  
Madhusudana Rao Chikka ◽  
Laetitia Chauve ◽  
Luis A. Martinez-Velazquez ◽  
...  

2014 ◽  
Vol 71 (17) ◽  
pp. 3339-3361 ◽  
Author(s):  
Vanessa Liang ◽  
Milena Ullrich ◽  
Hong Lam ◽  
Yee Lian Chew ◽  
Samuel Banister ◽  
...  

Abstract Protein misfolding and aggregation as a consequence of impaired protein homeostasis (proteostasis) not only characterizes numerous age-related diseases but also the aging process itself. Functionally related to the aging process are, among others, ribosomal proteins, suggesting an intimate link between proteostasis and aging. We determined by iTRAQ quantitative proteomic analysis in C. elegans how the proteome changes with age and in response to heat shock. Levels of ribosomal proteins and mitochondrial chaperones were decreased in aged animals, supporting the notion that proteostasis is altered during aging. Mitochondrial enzymes of the tricarboxylic acid cycle and the electron transport chain were also reduced, consistent with an age-associated energy impairment. Moreover, we observed an age-associated decline in the heat shock response. In order to determine how protein synthesis is altered in aging and in response to heat shock, we complemented our global analysis by determining the de novo proteome. For that, we established a novel method that enables both the visualization and identification of de novo synthesized proteins, by incorporating the non-canonical methionine analogue, azidohomoalanine (AHA), into the nascent polypeptides, followed by reacting the azide group of AHA by ‘click chemistry’ with an alkyne-labeled tag. Our analysis of AHA-tagged peptides demonstrated that the decreased abundance of, for example, ribosomal proteins in aged animals is not solely due to degradation but also reflects a relative decrease in their synthesis. Interestingly, although the net rate of protein synthesis is reduced in aged animals, our analyses indicate that the synthesis of certain proteins such as the vitellogenins increases with age.


2019 ◽  
Author(s):  
Nadia Vertti-Quintero ◽  
Simon Berger ◽  
Xavier Casadevall i Solvas ◽  
Cyril Statzer ◽  
Jillian Annis ◽  
...  

AbstractGenetics, environment, and stochasticity influence the rate of ageing in living organisms. Individual Caenorhabditis elegans that are genetically identical and cultured in the same environment have different lifespans, suggesting a significant role of stochasticity in ageing. We have developed a novel microfluidic methodology to measure heat-shock response as a surrogate marker for heterogeneity associated with lifespan and have quantified the heat-shock response of C. elegans at the population, single individual, and tissue levels. We have further mathematically modelled our data to identify the major drivers determining such heterogeneity. This approach demonstrates that protein translation and degradation rate constants explain the individuality of the heat-shock time-course dynamic. We observed a decline of protein turnover capacity in early adulthood, co-incidentally occurring as the predicted proteostasis collapse. We identified a decline of intestinal response as the tissue that underlies the individual heterogeneity. Additionally, we verified that individuals with enhanced translation fidelity in early adulthood live longer. Altogether, our results reveal that the stochastic onset of proteostasis collapse of somatic tissues during early adulthood reflects individual protein translation capacity underlying heterogenic ageing of isogenic C. elegans.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jacob M Garrigues ◽  
Brian V Tsu ◽  
Matthew D Daugherty ◽  
Amy E Pasquinelli

Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR.


2019 ◽  
Author(s):  
Sophie J. Walton ◽  
Han Wang ◽  
Porfirio Quintero-Cadena ◽  
Alex Bateman ◽  
Paul W. Sternberg

AbstractTo mitigate the deleterious effects of temperature increases on cellular organization and proteotoxicity, organisms have developed mechanisms to respond to heat stress. In eukaryotes, HSF1 is the master regulator of the heat shock transcriptional response, but the heat shock response pathway is not yet fully understood. From a forward genetic screen for suppressors of heat shock induced gene expression in C. elegans, we identified a new allele of hsf-1 that alters its DNA-binding domain, and three additional alleles of sup-45, a previously uncharacterized genetic locus. We identified sup-45 as one of the two hitherto unknown C. elegans orthologs of the human AF4/FMR2 family proteins, which are involved in regulation of transcriptional elongation rate. We thus renamed sup-45 as affl-2 (AF4/FMR2-Like). affl-2 mutants are egg-laying defective and dumpy, but worms lacking its sole paralog (affl-1) appear wild-type. AFFL-2 is a broadly expressed nuclear protein, and nuclear localization of AFFL-2 is necessary for its role in heat shock response. affl-2 and its paralog are not essential for proper HSF-1 expression and localization after heat shock, which suggests that affl-2 may function downstream or parallel of hsf-1. Our characterization of affl-2 provides insights into the complex processes of transcriptional elongation and regulating heat shock induced gene expression to protect against heat stress.


2013 ◽  
Vol 33 (14) ◽  
pp. 6102-6111 ◽  
Author(s):  
M. Maman ◽  
F. Carvalhal Marques ◽  
Y. Volovik ◽  
T. Dubnikov ◽  
M. Bejerano-Sagie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document