scholarly journals Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae)

2013 ◽  
Vol 216 (20) ◽  
pp. 3844-3853 ◽  
Author(s):  
B. Groenewald ◽  
C. S. Bazelet ◽  
C. P. Potter ◽  
J. S. Terblanche
Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 632
Author(s):  
Waseem Abbas ◽  
Philip C. Withers ◽  
Theodore A. Evans

Respiratory water loss during metabolic gas exchange is an unavoidable cost of living for terrestrial insects. It has been suggested to depend on several factors, such as the mode of gas exchange (convective vs. diffusive), species habitat (aridity), body size and measurement conditions (temperature). We measured this cost in terms of respiratory water loss relative to metabolic rate (respiratory water cost of gas exchange; RWL/V˙CO2) for adults of two insect species, the speckled cockroach (Nauphoeta cinerea) and the darkling beetle (Zophobas morio), which are similar in their mode of gas exchange (dominantly convective), habitat (mesic), body size and measurement conditions, by measuring gas exchange patterns using flow-through respirometry. The speckled cockroaches showed both continuous and discontinuous gas exchange patterns, which had significantly a different metabolic rate and respiratory water loss but the same respiratory water cost of gas exchange. The darkling beetles showed continuous gas exchange pattern only, and their metabolic rate, respiratory water loss and respiratory cost of gas exchange were equivalent to those cockroaches using continuous gas exchange. This outcome from our study highlights that the respiratory water cost of gas exchange is similar between species, regardless of gas exchange pattern used, when the confounding factors affecting this cost are controlled. However, the total evaporative water cost of gas exchange is much higher than the respiratory cost because cuticular water loss contributes considerably more to the overall evaporative water loss than respiratory water. We suggest that the total water cost of gas exchange is likely to be a more useful index of environmental adaptation (e.g., aridity) than just the respiratory water cost.


1990 ◽  
Vol 151 (1) ◽  
pp. 71-82 ◽  
Author(s):  
JOHN R. LIGHTON

Data on discontinuous ventilation phenomena in Camponotus detritus (Emery), an ant from the hyper-arid Namib Desert, are described and compared to equivalent data from two mesic insects, including Camponotus vicinus (Mayr). Although rate of CO2 production (Vco2 and body size were equivalent in C. detritus and C. vicinus, the ventilation rate of C. detritus was fourfold lower, significantly reducing predicted respiratory water loss rates. Ventilation rate was presumably modulated by Vco2, and low ventilation frequency was maintained in part by significant gas exchange during the fluttering-spiracle phase of the ventilation cycle, which is generally characterized by low rates of respiratory water loss.


2007 ◽  
Vol 7 ◽  
pp. 134-140 ◽  
Author(s):  
N. E. Grulke ◽  
E. Paoletti ◽  
R. L. Heath

We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3exposure (70 ppb for 8 h/day) was implemented in open-top chambers for either 1 month (California black oak) or 2 months (blue oak). Acute O3exposure (~1 h in duration during the day, 120–220 ppb) was implemented in a novel gas exchange system that supplied and maintained known O3concentrations to a leaf cuvette. When exposed to chronic daytime O3exposure, both oaks exhibited increased nocturnal transpiration (without concurrent O3exposure) relative to unexposed control leaves (1.8× and 1.6×, black and blue oak, respectively). Short-term acute and chronic O3exposure did not further increase nocturnal transpiration in either species. In blue oak previously unexposed to O3, short-term acute O3exposure significantly enhanced nocturnal transpiration (2.0×) relative to leaves unexposed to O3. California black oak was unresponsive to (only) short-term acute O3exposure. Daytime chronic and/or acute O3exposures can increase foliar water loss at night in deciduous oak seedlings.


Sign in / Sign up

Export Citation Format

Share Document