scholarly journals Acid-base regulation following acute acidosis in seawater-adapted rainbow trout, Salmo gairdneri: a possible role for catecholamines

1988 ◽  
Vol 134 (1) ◽  
pp. 297-312 ◽  
Author(s):  
Y. Tang ◽  
S. Nolan ◽  
R. G. Boutilier

A fall in blood pH was induced by intra-arterial infusion of HCl in seawater-adapted rainbow trout (Salmo gairdneri). The acute acidosis resulting from HCl infusion caused a short-lived decrease in plasma bicarbonate concentration ([HCO3-]) and an increase in arterial CO2 tension (PaCO2). Erythrocyte pH and bicarbonate concentrations were not significantly altered by the infusion of acid. Injection of acid did, however, stimulate a branchial net H+ efflux which could be primarily accounted for by a net uptake of bicarbonate equivalent ions from the environmental water. Acid infusion of animals pre-treated with the beta-adrenergic blocking agent, propranolol, induced a similar pattern of change in plasma acid-base status. However, the recovery of plasma pH and restoration of plasma [HCO3-] were slower than in animals infused with acid alone. Red cell pH fell significantly in the face of plasma acidosis in the beta-blocked animals. Erythrocyte [HCO3-] showed a similar pattern of change to that of erythrocyte pH. Branchial net H+ efflux increased to a lesser extent following acid infusion in animals treated with propranolol. We conclude that catecholamines released into the bloodstream during periods of acute acidosis may play an important role in facilitating branchial H+ efflux in seawater-adapted rainbow trout.

1989 ◽  
Vol 141 (1) ◽  
pp. 407-418 ◽  
Author(s):  
Y. TANG ◽  
D. G. McDONALD ◽  
R. G. BOUTILIER

Blood acid-base regulation following exhaustive exercise was investigated in freshwater- (FW) and seawater- (SW) adapted rainbow trout (Salmo gairdneri) of the same genetic stock. Following exhaustive exercise at 10°C, both FW and SW trout displayed a mixed respiratory and metabolic blood acidosis. However, in FW trout the acidosis was about double that of SW trout and arterial blood pH took twice as long to correct. These SW/FW differences were related to the relative amounts of net H+ equivalent excretion to the environmental water, SW trout excreting five times as much as FW trout. The greater H+ equivalent excretion in SW trout may be secondary to changes in the gills that accompany the adaptation from FW to SW. It may also be related to the higher concentrations of HCO3− as well as other exchangeable counter-ions (Na+ and Cl−) in the external medium in SW compared to FW.


1987 ◽  
Vol 128 (1) ◽  
pp. 235-253 ◽  
Author(s):  
S. I. Perry ◽  
M. G. Vermette

Rainbow trout were infused continuously for 24 h with epinephrine in order to elevate circulating levels of this hormone to those measured during periods of acute extracellular acidosis (approximately 5 X 10(−8) mol l-1). Concomitant effects on selected blood respiratory acid-base and ionic variables were evaluated. Infusion of epinephrine caused a transient respiratory acidosis as a result of hypoventilation and/or inhibition of red blood cell (RBC) bicarbonate dehydration. The acidosis was regulated by gradual accumulation of plasma bicarbonate. Even though whole blood pH (pHe) was depressed by 0.16 units, RBC pH (pHi) remained constant, thereby causing the transmembrane pH gradient (pHe-pHi) to decrease. A similar effect of epinephrine on RBC pH was observed in vitro, although the response required a higher concentration of epinephrine (2.0 X 10(−7) mol l-1). We speculate that the release of epinephrine during periods of depressed blood pH is important for preventing excessive shifts in RBC pH and for initiating a series of responses leading to plasma HCO3- accumulation and eventual restoration of blood acid-base status.


1981 ◽  
Vol 59 (6) ◽  
pp. 1126-1132 ◽  
Author(s):  
S. F. Perry ◽  
T. A. Heming

Effect of pseudobranch denervation on the ability of Salmo gairdneri to regulate blood ionic and acid–base balance was investigated in freshwater and following transfer to seawater. Denervation of the pseudobranch did not affect internal ionic or acid–base equilibrium in freshwater. Plasma [Cl−], [Na+], pH, total [Formula: see text], and partial pressure of [Formula: see text] of trout were affected by transfer from freshwater to seawater, and by transfer back to freshwater. These ionic and acid–base responses were not affected by denervation of the pseudobranch. It is concluded that alone, the pseudobranch plays little or no role in ionic and osmotic regulation during transfer between freshwater and seawater.


1981 ◽  
Vol 91 (1) ◽  
pp. 239-254
Author(s):  
P. R. H. Wilkes ◽  
R. L. Walker ◽  
D. G. McDonald ◽  
C. M. Wood

Blood gases, acid-base status, plasma ions, respiration, ventilation and cardiovascular function were measured in white suckers, using standard cannulation methods. Basic respiratory parameters under normoxia were compared to those in the active, pelagic rainbow trout and in other benthic teleosts. Sustained environmental hyperoxia (350–550 torr) increased arterial O2 (102–392 torr) and venous O2 (17–80 torr) tensions so that blood O2 transport occurred entirely via physical solution. Dorsal aortic blood pressure and heart rate fell, the latter due to an increase in vagal tone. Ventilation volume declined markedly (by 50%) due to a decrease in ventilatory stroke volume, but absolute O2 extraction rose so that O2 consumption was unaffected. While the preceding effects were stable with time, arterial and venous CO2 tensions approximately doubled within 4 h, and continued to increase gradually thereafter. This CO2 retention caused an acidosis (7.993–7.814) which was gradually compensated by an accumulation of plasma [HCO3−]. However, even after 72 h, arterial pH remained significantly depressed by 0.10 units. The gradual rise in plasma [HCO3−] was accompanied by a progressive fall in both [Na+] and [Cl−]; [K+] and [Ca2+] remained unchanged. The responses of the sucker to hyperoxia are compared to those of the rainbow trout.


1992 ◽  
Vol 173 (1) ◽  
pp. 181-203 ◽  
Author(s):  
B. James-Curtis ◽  
C. M. Wood

The relative roles of the kidney and urinary bladder in ion, fluid and acid-base regulation were examined in freshwater rainbow trout chronically infused with either 140 mmol l-1 NaCl or 140 mmol l-1 NaHCO3 (3 ml kg-1 h-1) for 32 h. NaCl had a negligible effect on blood ionic and acid-base status, whereas NaHCO3 induced a metabolic alkalosis characterized by a rise in arterial pH and [HCO3-] and an equimolar fall in [Cl-]. Urine was collected via either an internal catheter, which bypassed bladder function, or an external urinary catheter, which collected naturally voided urine. As a percentage of the infusion rate, glomerular filtration rate increased by about 135 %, but urine flow rate (UFR) by only 80 %, reflecting increased tubular reabsorption of H2O. During NaCl infusion, virtually all of the extra Na+ and Cl- filtered was reabsorbed by the kidney tubules, resulting in an increased UFR with largely unchanged composition. During NaHCO3 infusion, tubular Na+ and Cl- reabsorption again kept pace with filtration. HCO3- reabsorption also increased, but did not keep pace with filtration; an increased flow of HCO3--rich urine resulted, which excreted about 10 % of the infused base load. At rest, fish fitted with external catheters voided in discrete bursts of about 0.85 ml kg-1 at 25 min intervals. During infusion, burst frequency increased by about 40 % and burst volume by about 20 %. Reabsorption by the bladder reduced UFR by 25 %, the excretion of Na+ and Cl- by 50 %, of K+ by 44 % and of urea by 25 %. These differences persisted on a relative basis during NaCl and NaHCO3 infusion despite the decreased residence time. However, HCO3- was neither secreted nor reabsorbed by the bladder. We conclude that the freshwater kidney functions to remove as much NaCl as possible from the urine, regardless of the NaCl load, and this role is supplemented by bladder function. The bladder plays no role in acid-base regulation during metabolic alkalosis.


1991 ◽  
Vol 156 (1) ◽  
pp. 153-171 ◽  
Author(s):  
YONG TANG ◽  
ROBERT G. BOUTILIER

The intracellular acid-base status of white muscle of freshwater (FW) and seawater (SW) -adapted rainbow trout was examined before and after exhaustive exercise. Exhaustive exercise resulted in a pronounced intracellular acidosis with a greater pH drop in SW (0.82 pH units) than in FW (0.66 pH units) trout; this was accompanied by a marked rise in intracellular lactate levels, with more pronounced increases occurring in SW (54.4 mmoll−1) than in FW (45.7 mmoll−1) trout. Despite the more severe acidosis, recovery was faster in the SW animals, as indicated by a more rapid clearance of metabolic H+ and lactate loads. Compartmental analysis of the distribution of metabolic H+ and lactate loads showed that the more rapid recovery of pH in SW trout could be due to (1) their greater facility for excreting H+ equivalents to the environmental water [e.g. 15.5 % (SW) vs 5.0 % (FW) of the initial H+ load was stored in external water at 250 min post-exercise] and, to a greater extent, (2) the more rapid removal of H+, facilitated via lactate metabolism in situ (white muscle) and/or the Cori cycle (e.g. heart, liver). The slower pH recovery in FW trout may also be due in part to greater production of an ‘unmeasured acid’ [maximum approx. 8.5 mmol kg−1 fish (FW) vs approx. 6 mmol kg−1 fish (SW) at 70–130 min post-exercise] during the recovery period. Furthermore, the analysis revealed that H+-consuming metabolism is quantitatively the most important mechanism for the correction of an endogenously originating acidosis, and that extracellular pH normalization gains priority over intracellular pH regulation during recovery of acid-base status following exhaustive exercise.


Sign in / Sign up

Export Citation Format

Share Document