carbonate alkalinity
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Omme K. Nayna ◽  
Most Shirina Begum ◽  
Lishan Ran ◽  
Ji-Hyung Park

Estimating riverine carbon dioxide (CO2) emissions has been constrained by lacking field measurements of the partial pressure of CO2 (pCO2) and inaccuracies in calculating pCO2 using carbonate equilibria-based models such as CO2SYS. To evaluate potential errors in applying the carbonate equilibria-based pCO2 calculation to river systems affected by monsoon rainfall and water pollution, we compared pCO2 values calculated using CO2SYS and those measured by headspace equilibration in five Asian rivers (Ganges, Mekong, Yangtze, Yellow, and Han rivers) undergoing various water pollution stages. Across the five rivers, calculated and measured pCO2 values exhibited larger discrepancies during the monsoon season, particularly in the low pH range, while in the Han River mismatches were also noticeable during the dry season. In the Han River, pH was negatively correlated with dissolved organic carbon (DOC) during the monsoon, indicating organic acids flushed from soils during rainfalls as a key factor for overestimated pCO2 at sites with low pH and alkalinity, whereas dry-season overestimation of pCO2 may be ascribed to non-carbonate alkalinity including organic acids and inorganic anions delivered by wastewater effluents or sporadic rainfalls. The four large rivers exhibited a positive correlation between pH and DOC in tributaries during the monsoon season, indicating that DOC flushed from soils may be diluted by monsoonal floods to such a degree as to exert little influence on pH and hence pCO2. Therefore, the monsoonal overestimation of pCO2 at sites with low pH and alkalinity warrants further investigation of other factors than non-carbonate alkalinity to explain the increased sensitivity of pCO2 to subtle changes in acidity and buffering. These results illustrate the importance of direct measurements of pCO2 in highly polluted rivers, especially during the monsoon season. For river systems lacking pCO2 measurements, we suggest that carbonate equilibria-based models be complemented with corrective measures: 1) presenting pCO2 values calculated from low pH values (pH < 6.5 for monsoon and pH < 6.3 for dry season) together with the pH range to warn potential overestimation; 2) using pre-established regressions between measured pCO2 and environmental variables to correct pCO2 values, particularly during wet periods when large changes in pH and acid buffering are expected.


Author(s):  
F. Y. Alzoubi ◽  
Jehad. Y. Al-zou’by ◽  
Ihsan. A. Aljarrah ◽  
Kamel. K. Al-Zboon ◽  
H. M. Al-khateeb ◽  
...  

Author(s):  
Katie A. Albanese ◽  
Mrinal Chakraborty ◽  
Christopher M. Hadad ◽  
Yu-Ping Chin
Keyword(s):  

2020 ◽  
Vol 17 (20) ◽  
pp. 5163-5182
Author(s):  
Scott Zolkos ◽  
Suzanne E. Tank ◽  
Robert G. Striegl ◽  
Steven V. Kokelj ◽  
Justin Kokoszka ◽  
...  

Abstract. As climate warming and precipitation increase at high latitudes, permafrost terrains across the circumpolar north are poised for intensified geomorphic activity and sediment mobilization that are expected to persist for millennia. In previously glaciated permafrost terrain, ice-rich deposits are associated with large stores of reactive mineral substrate. Over geological timescales, chemical weathering moderates atmospheric CO2 levels, raising the prospect that mass wasting driven by terrain consolidation following thaw (thermokarst) may enhance weathering of permafrost sediments and thus climate feedbacks. The nature of these feedbacks depends upon the mineral composition of sediments (weathering sources) and the balance between atmospheric exchange of CO2 vs. fluvial export of carbonate alkalinity (Σ[HCO3-, CO32-]). Working in the fluvially incised, ice-rich glacial deposits of the Peel Plateau in northwestern Canada, we determine the effects of slope thermokarst in the form of retrogressive thaw slump (RTS) activity on mineral weathering sources, CO2 dynamics, and carbonate alkalinity export and how these effects integrate across watershed scales (∼ 2 to 1000 km2). We worked along three transects in nested watersheds with varying connectivity to RTS activity: a 550 m transect along a first-order thaw stream within a large RTS, a 14 km transect along a stream which directly received inputs from several RTSs, and a 70 km transect along a larger stream with headwaters that lay outside of RTS influence. In undisturbed headwaters, stream chemistry reflected CO2 from soil respiration processes and atmospheric exchange. Within the RTS, rapid sulfuric acid carbonate weathering, prompted by the exposure of sulfide- and carbonate-bearing tills, appeared to increase fluvial CO2 efflux to the atmosphere and propagate carbonate alkalinity across watershed scales. Despite covering less than 1 % of the landscape, RTS activity drove carbonate alkalinity to increase by 2 orders of magnitude along the largest transect. Amplified export of carbonate alkalinity together with isotopic signals of shifting DIC and CO2 sources along the downstream transects highlights the dynamic nature of carbon cycling that may typify glaciated permafrost watersheds subject to intensification of hillslope thermokarst. The balance between CO2 drawdown in regions where carbonic acid weathering predominates and CO2 release in regions where sulfides are more prevalent will determine the biogeochemical legacy of thermokarst and enhanced weathering in northern permafrost terrains. Effects of RTSs on carbon cycling can be expected to persist for millennia, indicating a need for their integration into predictions of weathering–carbon–climate feedbacks among thermokarst terrains.


RSC Advances ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 1552-1571
Author(s):  
Yan-chun Sun ◽  
Shi-cheng Han ◽  
Ming-zhu Yao ◽  
Hong-bai Liu ◽  
Yu-mei Wang

We explore the metabolic biomarker and pathway changes accompanying the adaptive evolution of crucian subjected to carbonate alkalinity exposure, using UPLC-ESI-QTOF-MS, in order to understand the molecular physiological mechanisms of saline–alkali tolerance.


Sign in / Sign up

Export Citation Format

Share Document