scholarly journals The role of angiotensin in arterial blood pressure regulation in the toad Bufo marinus.

1998 ◽  
Vol 201 (14) ◽  
pp. 2219-2224
Author(s):  
N H West ◽  
P Kimmel ◽  
Z L Topor ◽  
M D Evered

Little is known about the role of the renin-angiotensin system in anuran amphibians, although they appear to possess the functional components of such a system. We investigated the role of angiotensin (ANG) in arterial blood pressure regulation in the conscious toad Bufo marinus using the angiotensin-converting enzyme blocker captopril. We found that conversion of endogenous ANG I to ANG II made a significant contribution to mean arterial pressure in undisturbed animals. The vascular tone contributed by ANG II was not mediated via &agr ; adrenergic mechanisms because increases in pressure in response to ANG infusion were unaffected by the presence of the &agr ; antagonist phentolamine. Angiotensin-induced vasoconstriction was shown to be an important mechanism in arterial blood pressure regulation in the face of an acute hypotensive perturbation of pressure brought about by sodium nitroprusside. Blockade of the conversion of ANG I to ANG II significantly delayed the recovery of mean arterial pressure after sodium nitroprusside-induced hypotension. This suggests that the renin-angiotensin system may play an important role in the initial responses to hypotension in anurans, whether brought about by haemorrhage or dehydration.

2020 ◽  
Vol 129 (6) ◽  
pp. 1310-1323
Author(s):  
Jennifer L. Magnusson ◽  
Craig A. Emter ◽  
Kevin J. Cummings

The role of serotonin in arterial blood pressure (ABP) regulation across states of vigilance is unknown. We hypothesized that adult rats devoid of CNS serotonin (TPH2−/−) have low ABP in wakefulness and NREM sleep, when serotonin neurons are active. However, TPH2−/− rats experience higher ABP than TPH2+/+ rats in wakefulness and REM only, a phenotype present only in older males and not females. CNS serotonin may be critical for preventing high ABP in males with aging.


2007 ◽  
Vol 31 (S1) ◽  
pp. 343-346
Author(s):  
M. V. Varoni ◽  
D. Palomba ◽  
M. P. Demontis ◽  
S. Gianorso ◽  
G. L. Pais ◽  
...  

The Lancet ◽  
1995 ◽  
Vol 345 (8954) ◽  
pp. 896-897 ◽  
Author(s):  
P. August ◽  
F.B. Mueller ◽  
J.E. Sealey ◽  
T.G. Edersheim

1989 ◽  
Vol 256 (2) ◽  
pp. H486-H492
Author(s):  
K. L. Ryan ◽  
R. M. Thornton ◽  
D. W. Proppe

This study primarily sought to determine whether the role of vasopressin (VP) in maintenance of arterial blood pressure is enhanced in awake, chronically instrumented baboons after 68-72 h of dehydration. This question was approached by pharmacologically blocking vasopressin V1-receptors in euhydrated and dehydrated baboons with or without a normally functioning renin-angiotensin system (RAS). VP blockade during dehydration produced a rapidly occurring (within 5 min), statistically significant (P less than 0.05) decrease in mean arterial pressure (MAP) of 5 +/- 1 mmHg in the RAS-intact condition and an identical decline in MAP (5 +/- 1 mmHg) during blockade of the RAS by captopril, an angiotensin I-converting enzyme inhibitor. At 15 min after induction of VP blockade, heart rate was elevated by 9 +/- 2 beats/min in the RAS-intact condition and by 20 +/- 5 beats/min in the RAS-blocked condition. In addition, VP blockade in the dehydrated state produced small and equal increases in hindlimb vascular conductance in RAS-intact and RAS-blocked conditions. None of these cardiovascular changes were produced by VP blockade in the euhydrated state. RAS blockade produced modest declines in MAP in both hydration states, but the fall was larger by 7 +/- 4 mmHg in the dehydrated state. Thus both VP and the RAS contribute to the maintenance of arterial blood pressure during dehydration in the conscious baboon.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mayank Chaudhary

Background:: Renin angiotensin system (RAS) is a critical pathway involved in blood pressure regulation. Octapeptide, angiotensin II (Ang aII), is biologically active compound of RAS pathway which mediates its action by binding to either angiotensin II type 1 receptor (AT1R) or angiotensin II type 2 receptor (AT2R). Binding of Ang II to AT1R facilitates blood pressure regulation whereas AT2R is primarily involved in wound healing and tissue remodelling. Objective:: Recent studies have highlighted additional role of AT2R to counter balance detrimental effects of AT1R. Activation of angiotensin II type 2 receptor using AT2R agonist has shown effect on natriuresis and release of nitric oxide. Additionally, AT2R activation has been found to inhibit angiotensin converting enzyme (ACE) and enhance angiotensin receptor blocker (ARB) activity. These findings highlight the potential of AT2R as novel therapeutic target against hypertension. Conclusion:: The potential role of AT2R highlights the importance of exploring additional mechanisms that might be crucial for AT2R expression. Epigenetic mechanisms including DNA methylation and histone modification have been explored vastly with relation to cancer but role of such mechanisms on expression of AT2R has recently gained interest.


2003 ◽  
Vol 98 (6) ◽  
pp. 1338-1344 ◽  
Author(s):  
Gilles Boccara ◽  
Alexandre Ouattara ◽  
Gilles Godet ◽  
Eric Dufresne ◽  
Michèle Bertrand ◽  
...  

Background Terlipressin, a precursor that is metabolized to lysine-vasopressin, has been proposed as a drug for treatment of intraoperative arterial hypotension refractory to ephedrine in patients who have received long-term treatment with renin-angiotensin system inhibitors. The authors compared the effectiveness of terlipressin and norepinephrine to correct hypotension in these patients. Methods Among 42 patients scheduled for elective carotid endarterectomy, 20 had arterial hypotension following general anesthesia that was refractory to ephedrine. These patients were the basis of the study. After randomization, they received either 1 mg intravenous terlipressin (n = 10) or norepinephrine infusion (n = 10). Beat-by-beat recordings of systolic arterial blood pressure and heart rate were stored on a computer. The intraoperative maximum and minimum values of blood pressure and heart rate, and the time spent with systolic arterial blood pressure below 90 mmHg and above 160 mmHg, were used as indices of hemodynamic stability. Data are expressed as median (95% confidence interval). Results Terlipressin and norepinephrine corrected arterial hypotension in all cases. However, time spent with systolic arterial blood pressure below 90 mmHg was less in the terlipressin group (0 s [0-120 s] vs. 510 s [120-1011 s]; P < 0.001). Nonresponse to treatment (defined as three boluses of terlipressin or three changes in norepinephrine infusion) occurred in zero and eight cases (P < 0.05), respectively. Conclusions In patients who received long-term treatment with renin-angiotensin system inhibitors, intraoperative refractory arterial hypotension was corrected with both terlipressin and norepinephrine. However, terlipressin was more rapidly effective for maintaining normal systolic arterial blood pressure during general anesthesia.


Sign in / Sign up

Export Citation Format

Share Document