Anti-Hypertensive Potential and Epigenetics of Angiotensin II type 2 Receptor (AT2R)

2020 ◽  
Vol 16 ◽  
Author(s):  
Mayank Chaudhary

Background:: Renin angiotensin system (RAS) is a critical pathway involved in blood pressure regulation. Octapeptide, angiotensin II (Ang aII), is biologically active compound of RAS pathway which mediates its action by binding to either angiotensin II type 1 receptor (AT1R) or angiotensin II type 2 receptor (AT2R). Binding of Ang II to AT1R facilitates blood pressure regulation whereas AT2R is primarily involved in wound healing and tissue remodelling. Objective:: Recent studies have highlighted additional role of AT2R to counter balance detrimental effects of AT1R. Activation of angiotensin II type 2 receptor using AT2R agonist has shown effect on natriuresis and release of nitric oxide. Additionally, AT2R activation has been found to inhibit angiotensin converting enzyme (ACE) and enhance angiotensin receptor blocker (ARB) activity. These findings highlight the potential of AT2R as novel therapeutic target against hypertension. Conclusion:: The potential role of AT2R highlights the importance of exploring additional mechanisms that might be crucial for AT2R expression. Epigenetic mechanisms including DNA methylation and histone modification have been explored vastly with relation to cancer but role of such mechanisms on expression of AT2R has recently gained interest.

1977 ◽  
Vol 232 (2) ◽  
pp. H110-H113
Author(s):  
N. C. Trippodo ◽  
T. G. Coleman ◽  
A. W. Cowley ◽  
A. C. Guyton

Blood pressure effects of angiotensin II antagonists were studied in sham-operated and baroreceptor-denervated rabbits in the normal water-replete state or after 6 days of water deprivation (dehydrated). Experiments were performed in awake rabbits. Dehydrated rabbits had significantly higher plasma sodium concentrations, hematocrits, and plasma renin activities, but lower plasma potassium concentrations and body weights than water-replete rabbits. Administration of angiotensin II antagonists caused a significant decrease in mean arterial pressure in dehydrated rabbits (-16 mmHg in sham-dehydrated and -19 mmHg in denervated-dehydrated) but not in water-replete ones, whether the baroreceptor reflexes were intact or not (-1 mmHg in sham replete and -4 mmHg in denervated replete). The open-loop feedback gain of the renin-angiotensin system in blood pressure control was calculated as -1.6. The results demonstrate an important role of angiotensin II in blood pressure regulation during the high-renin, dehydrated state, but not during the normal renin, water-replete state. Abolishment of baroreceptor reflexes did not unmask an important role of normal levels of angiotensin II in blood pressure regulation.


2007 ◽  
Vol 31 (S1) ◽  
pp. 343-346
Author(s):  
M. V. Varoni ◽  
D. Palomba ◽  
M. P. Demontis ◽  
S. Gianorso ◽  
G. L. Pais ◽  
...  

The Lancet ◽  
1995 ◽  
Vol 345 (8954) ◽  
pp. 896-897 ◽  
Author(s):  
P. August ◽  
F.B. Mueller ◽  
J.E. Sealey ◽  
T.G. Edersheim

1997 ◽  
Vol 272 (4) ◽  
pp. F515-F520 ◽  
Author(s):  
M. I. Oliverio ◽  
C. F. Best ◽  
H. S. Kim ◽  
W. J. Arendshorst ◽  
O. Smithies ◽  
...  

Most of the classic functions of the renin-angiotensin system are mediated by type 1 (AT1) angiotensin receptors, of which two subtypes, AT1A and AT1B, have been identified. However, distinct functions for these two AT1 receptors have been difficult to separate. We examined the pressor effects of angiotensin II in Agtr1A -/- mice, which lack AT1A receptors. In enalapril-pretreated Agtr1A -/- mice, angiotensin II caused significant and dose-proportional increases in mean arterial pressure. This pressor response was not blocked by pretreatment with sympatholytic agents but was completely inhibited by the AT1-receptor antagonists, losartan and candesartan, suggesting that it is directly mediated by AT1B receptors. Chronic treatment of Agtr1A -/- mice with losartan reduced systolic blood pressure from 80 +/- 5 to 72 +/- 4 mmHg (P < 0.04), suggesting a role for AT1B receptors in chronic blood pressure regulation. These studies provide the first demonstration of in vivo pressor effects mediated by AT1B receptors and demonstrate that, when AT1A receptors are absent, the AT1B receptor contributes to the regulation of resting blood pressure.


Sign in / Sign up

Export Citation Format

Share Document