Cardiovascular responses in vivo to angiotensin II and the peptide antagonist saralasin in rainbow trout Oncorhynchus mykiss.

1998 ◽  
Vol 201 (2) ◽  
pp. 267-272 ◽  
Author(s):  
J Fuentes ◽  
F B Eddy

The effects of [Asn1,Val5]-angiotensin II (AngII) and [Sar1,Val5, Ala8]-angiotensin II (saralasin) on dorsal aortic blood pressure, pulse pressure and heart rate were examined in rainbow trout in vivo. AngII when administered as a single dose of 25 microg kg-1 induced a biphasic response in blood pressure, with a significant hypertensive response during the initial 10 min, followed by a significant hypotension of 70-75 % compared with the initial blood pressure after 50 min and continuing until approximately 80 min post-injection. The co-administration of AngII (25 microg kg-1) and saralasin (50 microg kg-1) resulted in the same hypertensive response during the initial phase, but abolished the hypotensive effect of AngII. Heart rate was significantly increased in response to AngII, but the administration of AngII and saralasin together attenuated the increase by approximately 44 %. Stimulation of the endogenous renin-angiotensin system using a vasodilator, sodium nitroprusside, significantly increased drinking rate in rainbow trout fry, a response inhibited by saralasin, indicating a role for AngII-induced hypotension in drinking. For the first time, a decrease in blood pressure in response to AngII in vivo has been demonstrated in fish, and this is discussed in relation to homeostasis of blood pressure and a possible role in the control of drinking.

2001 ◽  
Vol 204 (1) ◽  
pp. 115-125 ◽  
Author(s):  
J.E. McKendry ◽  
S.F. Perry

In situ and in vivo experiments were performed on rainbow trout (Oncorhynchus mykiss) to examine (i) the direct effect of CO(2) on the systemic vasculature and (ii) the influence of internal versus external hypercapnic acidosis on cardiovascular variables including blood pressure, cardiac output and systemic vascular resistance. Results from in situ saline-perfused trunk preparations indicated that CO(2) (0.6, 1.0 or 2.0% CO(2)) elicited a significant vasodilation, but only in the presence of pre-existing humoral adrenergic tone. In the absence of pre-existing vascular tone, CO(2) was without effect on systemic resistance. In contrast, hypercarbia in vivo triggered a statistically significant increase in systemic resistance (approximately 70 %) that was associated with elevated ventral aortic (approximately 42 %) and dorsal aortic (approximately 43 %) blood pressures and with a significant bradycardia (approximately 12 %); cardiac output was not significantly affected. To determine the potential roles of internal versus external chemoreceptors in mediating the cardiovascular responses to hypercarbia, experiments were performed to elevate the endogenous arterial partial pressure of CO(2) (Pa(CO2)) without an accompanying increase in external P(CO2) (Pw(CO2)). In one series, trout were given a bolus injection of the carbonic anhydrase inhibitor acetazolamide (30 mg kg(−1)) to inhibit CO(2) excretion, and thus raise Pa(CO2), 5–7 h prior to being exposed to an acute increase in Pw(CO2) (maximum Pw(CO2)=6.3+/−0.4 mmHg; 1 mmHg=0.133 kPa). Despite a marked increase in Pa(CO2) (approximately 7 mmHg) after injection of acetazolamide, there was no increase in dorsal aortic blood pressure (P(DA)) or systemic resistance (R(S)). The ensuing exposure to hypercarbia, however, significantly increased P(DA) (by approximately 20 %) and R(S) (by approximately 35 %). A second series of experiments used a 5–7 h period of exposure to hyperoxia (Pw(O2)=643+/−16 mmHg) to establish a new, elevated baseline Pa(CO2) (7.8+/−1.1 mmHg) without any change in Pw(CO2). Despite a steadily increasing Pa(CO2) during the 5–7 h of hyperoxia, there was no associated increase in P(DA) or R(S). Ensuing exposure to hypercarbia, however, significantly increased P(DA) (by approximately 20 %) and R(S) (by approximately 150 %). Plasma adrenaline levels were increased significantly during exposure to hypercarbia and, therefore, probably contributed to the accompanying cardiovascular effects. These findings demonstrate that the cardiovascular effects associated with hypercarbia in rainbow trout are unrelated to any direct constrictory effects of CO(2) on the systemic vasculature and are unlikely to be triggered by activation of internally oriented receptors. Instead, the data suggest that the cardiovascular responses associated with hypercarbia are mediated exclusively by externally oriented chemoreceptors.


1997 ◽  
Vol 272 (6) ◽  
pp. R1698-R1703 ◽  
Author(s):  
M. A. Allen ◽  
P. M. Smith ◽  
A. V. Ferguson

Adrenomedullin (ADM) circulates in the blood at concentrations comparable to other vasoactive peptides with established roles in cardiovascular regulation. Intravenously administered ADM produces a clear hypotensive effect, whereas intracerebroventricular microinjections result in increases in blood pressure (BP). Recently, we demonstrated that ADM influences neurons of the area postrema (AP), a central nervous system site implicated in cardiovascular control. However, to address directly the physiological significance of the actions of ADM at the AP, an in vivo microinjection study was undertaken. ADM, at two concentrations (1 and 10 microM), in volumes of 50, 100, and 200 nl, was microinjected into the AP or NTS of 21 urethan-anesthetized male Sprague-Dawley rats. Microinjection of 10 microM ADM (100 nl) resulted in significant transient (2-5 min) increases in BP [120 s area under the curve (AUC): 684.3 +/- 268.6 mmHg/s (P < 0.05)], and heart rate (HR) [AUC: 12.5 +/- 4.5 beats/min (P < 0.05)]. The lower concentration of ADM (1 microM) had no effect on either BP (179.1 +/- 143.6 mmHg/s) or HR (0.8 +/- 2.6 beats/min). ADM was also microinjected into the immediately adjacent nucleus of the solitary tract, where it was found to be without effect on either BP or HR. This study demonstrates, for the first time, a physiological role for ADM acting at a specific brain site, the AP, to produce significant cardiovascular responses.


1983 ◽  
Vol 245 (6) ◽  
pp. H1013-H1018 ◽  
Author(s):  
H. Takahashi ◽  
K. Takeda ◽  
H. Ashizawa ◽  
A. Inoue ◽  
S. Yoneda ◽  
...  

Central effects of hydrocortisone were investigated by injecting it intracerebroventricularly (icv) while recording blood pressure and heart rate in awake rats. Dose-dependent increases in both blood pressure and heart rate occurred following injections of hydrocortisone. Pretreatment by icv injections of the angiotensin II antagonist, [Sar1-Ile8]angiotensin II, completely abolished vasopressor responses to subsequent injections of hydrocortisone. When rats were later anesthetized with urethan to allow recording of abdominal sympathetic nerve activity, hydrocortisone produced vasopressor responses accompanied by corresponding increases in sympathetic nerve firing, which were also abolished by central pretreatment with either [Sar1-Ile8]angiotensin II or angiotensin I converting-enzyme inhibitor, captopril. These results indicate that centrally administered hydrocortisone stimulates the brain renin-angiotensin system to produce vasopressor responses by increasing sympathetic nerve firing.


1990 ◽  
Vol 258 (4) ◽  
pp. R852-R859 ◽  
Author(s):  
K. C. Tomlinson ◽  
S. M. Gardiner ◽  
T. Bennett

The diabetogenic agent streptozotocin (STZ) was injected intraperitoneally in Long-Evans and arginine vasopressin (AVP)-deficient Brattleboro rats. Twenty-eight days later both strains had a bradycardia and systolic hypotension; STZ-treated Brattleboro rats also had diastolic hypotension. The vasopressin (V1-receptor) antagonist, d(CH2)5[Tyr(Et)]DAVP, had no effect on resting blood pressure (BP) or heart rate (HR) in either strain of rat, indicating the relative maintenance of diastolic BP in STZ-treated Long-Evans rats was not dependent on acute vascular actions of AVP. Captopril caused a modest hypotension in all groups of rats, indicating that BP was not differentially dependent on the renin-angiotensin system in the different groups. In the presence of captopril and the ganglion blocker, pentolinium tartrate, the AVP-mediated recovery in BP was impaired in STZ-treated Long-Evans rats. During administration of d(CH2)5[Tyr(Et)]DAVP and pentolinium, the angiotensin II (ANG II)-mediated BP recovery was smaller in both groups of STZ-treated rats, indicating that this abnormality was not likely to be caused by inhibition of renin release by AVP. The abnormalities in ANG II- and AVP-mediated recovery were prevented by insulin treatment.


1991 ◽  
Vol 69 (3) ◽  
pp. 389-392 ◽  
Author(s):  
C. Lambert ◽  
D. Godin ◽  
P. Fortier ◽  
R. Nadeau

The chronotropic responses to angiotensins I and II (5 μg in 1 mL Tyrode's solution) injected into the sinus node artery were assessed before and after the intravenous administration of captopril (2 mg/kg) and saralasin (20 μg/kg) in anaesthetized dogs. The effects of angiotensin II given intravenously were also observed. The animals (n = 8) were vagotomized and pretreated with propranolol (1 mg/kg, i.v.) to prevent baroreceptor-mediated responses to increases in blood pressure. Injection of angiotensin I into the sinus node artery induced significant increases in heart rate (114 ± 6 vs. 133 ± 6 beats/min) and in systemic systolic (134 ± 13 vs. 157 ± 14 mmHg; 1 mmHg = 133.3 Pa) and diastolic (95 ± 10 vs. 126 ± 13 mmHg) blood pressures. Similar results were obtained when angiotensin II was injected into the sinus node artery, but intravenous injection induced changes in systolic (138 ± 8 vs. 180 ± 25 mmHg) and diastolic (103 ± 8 vs. 145 ± 20 mmHg) blood pressures only. Captopril induced a significant decrease in systolic (118 ± 11 vs. 88 ± 12 mmHg) and diastolic (84 ± 9 vs. 59 ± 9 mmHg) blood pressures without affecting the heart rate (109 ± 6 vs. 106 ± 6 beats/min). Saralasin produced a significant increase in systolic (109 ± 7 vs. 126 ± 12 mmHg) blood pressure only. Increments in heart rate and systolic and diastolic blood pressures in response to angiotensins I and II were, respectively, abolished by captopril and saralasin. It was concluded that angiotensin II has, in vivo, a direct positive chronotropic effect that can be blocked by saralasin. The antagonism by captopril of the response to angiotensin I suggests the presence of local tissue converting enzyme activity in the region of the sinus node.Key words: angiotensin, chronotropic effect, tissue converting enzyme.


1997 ◽  
Vol 272 (4) ◽  
pp. F515-F520 ◽  
Author(s):  
M. I. Oliverio ◽  
C. F. Best ◽  
H. S. Kim ◽  
W. J. Arendshorst ◽  
O. Smithies ◽  
...  

Most of the classic functions of the renin-angiotensin system are mediated by type 1 (AT1) angiotensin receptors, of which two subtypes, AT1A and AT1B, have been identified. However, distinct functions for these two AT1 receptors have been difficult to separate. We examined the pressor effects of angiotensin II in Agtr1A -/- mice, which lack AT1A receptors. In enalapril-pretreated Agtr1A -/- mice, angiotensin II caused significant and dose-proportional increases in mean arterial pressure. This pressor response was not blocked by pretreatment with sympatholytic agents but was completely inhibited by the AT1-receptor antagonists, losartan and candesartan, suggesting that it is directly mediated by AT1B receptors. Chronic treatment of Agtr1A -/- mice with losartan reduced systolic blood pressure from 80 +/- 5 to 72 +/- 4 mmHg (P < 0.04), suggesting a role for AT1B receptors in chronic blood pressure regulation. These studies provide the first demonstration of in vivo pressor effects mediated by AT1B receptors and demonstrate that, when AT1A receptors are absent, the AT1B receptor contributes to the regulation of resting blood pressure.


1987 ◽  
Vol 253 (5) ◽  
pp. R726-R734 ◽  
Author(s):  
R. A. Hebden ◽  
T. Bennett ◽  
S. M. Gardiner

We investigated the pressor sensitivities to vasopressin, angiotensin II, and methoxamine of intact and ganglion-blocked rats that had been treated 21 days earlier with streptozotocin or saline. No differences in blood pressure or heart rate responses to vasopressin or angiotensin II were found between the intact groups when these peptides were administered intravenously in equimolar doses. After ganglion blockade a significant enhancement in pressor responsiveness to both vasopressin and angiotensin II was observed in the control groups, but in the streptozotocin-treated animals no enhancement in pressor sensitivity to vasopressin was found. Furthermore, although a significant augmentation of the responses to angiotensin II was observed, it was smaller than that seen in the ganglion-blocked control group. Neither group showed enhanced pressor responsiveness to methoxamine. These results indicate that the previously observed diminished contributions from endogenous vasopressin and the renin-angiotensin system to blood pressure recovery following ganglion blockade in streptozotocin-treated rats may have been due, at least in part, to diminished pressor responsiveness.


1985 ◽  
Vol 117 (1) ◽  
pp. 335-347 ◽  
Author(s):  
D. G. Smith ◽  
S. Nilsson ◽  
I. Wahlqvist ◽  
B. M. Eriksson

Dorsal (PDA) and ventral aortic blood pressure (PVA) and heart rate (HR) were measured in conscious resting cod, Gadus morhua L., which has been allowed 24 h recovery from surgery. Plasma adrenalin and nonadrenalin concentrations in these fish were 3.4 and 2.2 nmoll-1 respectively, and thus lower than previously reported values from partially recovered cod. Twenty-four hours after treatment with the adrenergic neurone blocking agent bretylium, PDA was significantly reduced by 17% compared to sham-injected controls, although PVA and heart rate were unaltered. Subsequent alpha-adrenoceptor blockade by phentolamine produced no further fall in PDA and no changes in PVA or HR, provided a 5-h period was allowed to overcome the acute toxic side effects of phentolamine. The effectiveness of the bretylium or phentolamine blockade was confirmed by noting the absence of any vasoconstrictor response during sympathetic nerve stimulation in perfused tails from fish used in the in vivo experiments. Bretylium had no significant effect on the sensitivity of the isolated coeliac artery to adrenalin, but effectively blocked the adrenergic innervation of this artery or the vasculature of the tail. Evidence for a non-selective blockade of non-adrenergic nerves to the heart was also obtained. It is concluded that the adrenergic tonus affecting the dorsal aortic blood pressure in resting cod that have recovered for 24 h following surgery is due solely to an adrenergic nervous tone.


2001 ◽  
Vol 281 (4) ◽  
pp. R1224-R1231 ◽  
Author(s):  
Qing-Hua Jin ◽  
Yuto Ueda ◽  
Yuta Ishizuka ◽  
Takato Kunitake ◽  
Hiroshi Kannan

To elucidate neurochemical mechanisms responsible for cardiovascular responses induced by central salt loading, we directly perfused the paraventricular nucleus (PVN) of the hypothalamus region with hypertonic saline (0.3 or 0.45 M) by using an in vivo brain microdialysis technique. We then measured the extracellular concentrations of glutamate in the PVN region in conscious rats along with the blood pressure and heart rate. Blood pressure, heart rate, and glutamate levels were increased by perfusion of 0.45 M saline; however, they did not change by perfusion of 0.3 M saline. Next, we examined the possible involvement of glutamate in the cardiovascular responses induced by hypertonic saline. Dizocilpine, a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, attenuated the increases of blood pressure and heart rate, although 6-cyano-7-nitroquinoxaline-2,3-dione, an antagonist of the non-NMDA receptor, did not affect the blood pressure and heart rate. Our results show that local perfusion of the hypothalamic PVN region with hypertonic saline elicits a local release of glutamate, which may act via NMDA-type glutamate receptors to produce cardiovascular responses.


Sign in / Sign up

Export Citation Format

Share Document