scholarly journals The effect of alterations in activity and body temperature on the pulmonary surfactant system in the lesser long-eared bat Nyctophilus geoffroyi

2000 ◽  
Vol 203 (16) ◽  
pp. 2429-2435 ◽  
Author(s):  
N.C. Slocombe ◽  
J.R. Codd ◽  
P.G. Wood ◽  
S. Orgeig ◽  
C.B. Daniels

Pulmonary surfactant is a mixture of phospholipids, neutral lipids and proteins that controls the surface tension of the fluid lining the lung. It is critical for lung stability and function. The amount and composition of surfactant are influenced by physiological variables such as metabolic rate, body temperature and ventilation. We investigated the plasticity of the pulmonary surfactant system in the microchiropteran bat Nyctophilus geoffroyi throughout a natural 24 h cycle. Bats were housed at 24 degrees C on a fixed (8 h:16 h) light:dark photoperiod. At 4 h intervals throughout the 24 h period, bats were lavaged and the surfactant analysed for absolute and relative amounts of total phospholipid (PL), disaturated phospholipid (DSP) and cholesterol (Chol). N. geoffroyi experienced two peaks of activity, at 18:00 h and 06:00 h. The amount of surfactant increased 1.5-fold upon arousal from torpor. The proportion of DSP to PL in the surfactant remained constant. Similarly, the Chol/PL and Chol/DSP ratios remained relatively constant. Surfactant cholesterol content did not increase during torpor in N. geoffroyi. Cholesterol does not appear to control surfactant fluidity during torpor in these bats, but instead the cholesterol content exactly mirrored the diurnal changes in body temperature.

1994 ◽  
Vol 266 (4) ◽  
pp. R1309-R1313 ◽  
Author(s):  
A. W. Smits ◽  
S. Orgeig ◽  
C. B. Daniels

Examination of lung washings from primitive air-breathing fishes (ropefish, bichirs, and gar) revealed a lipid-based surfactant with an average disaturated phospholipid-to-total phospholipid ratio five times lower than in mammals. The lung lavage of fishes was exceptionally rich in cholesterol, resulting in average cholesterol-to-phospholipid ratios three times higher, and cholesterol-to-disaturated phospholipid ratios nearly 15 times higher, than those of mammals. Removal of lung surfactant doubled the pressures necessary to initially open the anterior regions of collapsed lungs in all three fish species but had little or no effect on pressures required to fill the lung (i.e., compliance) after the initial opening. The elevated cholesterol content found in pulmonary surfactant of these fishes is consistent with such findings in other ectotherms, suggesting that the proportional elevation of cholesterol may serve to stabilize the fluidity of the lung surfactant over broader temperature ranges. The influence of surfactant on lung opening pressures rather than on compliance contrasts with that seen in mammals and supports an "antiglue" role of pulmonary surfactant in the simpler open-design lungs of lower vertebrates.


1986 ◽  
Vol 123 (1) ◽  
pp. 1-26
Author(s):  
TAKAHIKO HARIYAMA ◽  
V. BENNO MEYER-ROCHOW ◽  
EISUKE EGUCHI

The ultrastructure of the retinula cells of Ligia exotica changes diurnally and in response to light/dark adaptation. At the low phase of electroretinogram (ERG) amplitude (at noon), the arrangement of microvilli is ordered and the rhabdom is of the open type. An irregular arrangement of microvilli appears at the high phase of ERG amplitude (at midnight), when the rhabdom is of the closed type. The pigment granules disperse at midnight and assemble at noon. A centrally positioned, spikeproducing eccentric cell is present in each ommatidium. Spectral response curves based on ERG measurements have two maxima, one to light of 383 nm wavelength, the other at around 520 nm. These two peaks represent the two classes of receptor cells identified by intracellular recordings. The ERG responses to light of 383 nm and 520 nm wavelengths display a diurnal rhythmicity, being high at night and low during the day. However, the responses to green light are more strongly affected than those to ultraviolet light. Consequently, the eye displays a relatively higher ultraviolet-sensitivity during the day, whereas at night sensitivity to green light is increased. This behaviour, which persists in continuous darkness, suggests that an endogenous mechanism is involved in bringing about the observed diurnal morphological and physiological changes in the compound eye of Ligia exotica.


1996 ◽  
Vol 271 (2) ◽  
pp. R437-R445 ◽  
Author(s):  
C. Langman ◽  
S. Orgeig ◽  
C. B. Daniels

Cold profoundly influences lung compliance in homeothermic mammals. Much of this effect has traditionally been attributed to the inactivation of the surfactant system. However, many mammals undergo large fluctuations in body temperature (heterothermic mammals). Here, the surfactant lipid composition and lung compliance of warm-active dunnarts (Sminthopsis crassicaudata) and the homeothermic mouse (Mus musculus) [body temperature (Tb) = 35-37 degrees C] were compared with those of dunnarts killed after 1,4 or 8 h of torpor (Tb < 20 degrees C). Lung compliance was measured before and after the removal of surfactant, and tissue compliance was determined by inflating the lung with saline. Relative to total phospholipid (PL), mouse surfactant contained proportionately less phosphatidylinositol but more cholesterol (Chol) and phosphatidylglycerol than that of the dunnart. Lung compliance was lower in dunnarts than in mice, consistent with an allometric effect. Surfactant levels, including total PL, Chol, and disaturated phospholipid (DSP) increased during torpor. The relative proportions of Chol and DSP increased after 4 and 8 h, respectively. In marked contrast to previous studies on the behavior of isolated lungs from homeothermic mammals, in our study the lung compliance of dunnarts remained unchanged throughout torpor. Tissue compliance decreased at 1 and 4 h of torpor, but this decrease was abolished by 8 h. It appears that the surfactant of the dunnarts counteracted the negative effect of tissue compliance at 1 and 4 h, an effect not present in homeothermic mammals. However, because lung compliance was maintained at 1 h of torpor in the absence of a compositional change in surfactant lipids, the changes in lipid composition observed at 4 and 8 h of torpor are thought to relate to functions of surfactant other than that of maintaining lung compliance.


2003 ◽  
Vol 15 (1) ◽  
pp. 55 ◽  
Author(s):  
Sandra Orgeig ◽  
Christopher B. Daniels ◽  
Sonya D. Johnston ◽  
Lucy C. Sullivan

Pulmonary surfactant is a complex mixture of phospholipids (PLs), neutral lipids and proteins that lines the inner surface of the lung. Here it modulates surface tension, thereby increasing lung compliance and preventing the transudation of fluid. In humans, pulmonary surfactant is comprised of approximately 80% PLs, 12% neutral lipids and 8% protein. In most eutherian (i.e. placental) mammals, cholesterol (Chol) comprises approximately 8–10% by weight or 14–20 mol% of both alveolar and lamellar body surfactant. It is regarded as an integral component of pulmonary surfactant, yet few studies have concentrated on its function or control. The lipid composition is highly conserved within the vertebrates, except that surfactant of teleost fish is dominated by cholesterol, whereas tetrapod pulmonary surfactant contains a high proportion of disaturated phospholipids (DSPs). The primitive Australian dipnoan lungfish Neoceratodus forsterii demonstrates a ‘fish-type’ surfactant profile, whereas the other derived dipnoans demonstrate a surfactant profile similar to that of tetrapods. Homology of the surfactant proteins within the vertebrates points to a single evolutionary origin for the system and indicates that fish surfactant is a ‘protosurfactant’. Among the terrestrial tetrapods, the relative proportions of DSPs and cholesterol vary in response to lung structure, habitat and body temperature (T b), but not in relation to phylogeny. The cholesterol content of surfactant is elevated in species with simple saccular lungs or in aquatic species or in species with low T b. The DSP content is highest in complex lungs, particularly of aquatic species or species with high T b. Cholesterol is controlled separately from the PL component in surfactant. For example, in heterothermic mammals (i.e. mammals that vary their body temperature), the relative amount of cholesterol increases in cold animals. The rapid changes in the Chol to PL ratio in response to various physiological stimuli suggest that these two components have different turnover rates and may be packaged and processed differently. In mammals, the pulmonary surfactant system develops towards the end of gestation and is characterized by an increase in the saturation of PLs in lung washings and the appearance of surfactant proteins in amniotic fluid. In general, the pattern of surfactant development is highly conserved among the amniotes. This conservation of process is demonstrated by an increase in the amount and saturation of the surfactant PLs in the final stages (>75%) of development. Although the ratios of surfactant components (Chol, PL and DSP) are remarkably similar at the time of hatching/birth, the relative timing of the maturation of the lipid profiles differs dramatically between species. The uniformity of composition between species, despite differences in lung morphology, birthing strategy and relationship to each other, implies that the ratios are critical for the onset of pulmonary ventilation. The differences in the timing, on the other hand, appear to relate primarily to birthing strategy and the onset of air breathing. As the amount of cholesterol relative to the phospholipids is highly elevated in immature lungs, the pattern of cholesterol during development and evolution represents an example of ontogeny recapitulating phylogeny. The fact that cholesterol is an important component of respiratory structures that are primitive, when they are not in use or developing in an embryo, demonstrates that this substance has important and exciting roles in surfactant. These roles still remain to be explored.


2000 ◽  
Vol 278 (2) ◽  
pp. R486-R493 ◽  
Author(s):  
Sonya D. Johnston ◽  
Sandra Orgeig ◽  
Olga V. Lopatko ◽  
Christopher B. Daniels

In birds and oviparous reptiles, hatching is often a lengthy and exhausting process, which commences with pipping followed by lung clearance and pulmonary ventilation. We examined the composition of pulmonary surfactant in the developing lungs of the chicken, Gallus gallus, and of the bearded dragon, Pogona vitticeps. Lung tissue was collected from chicken embryos at days 14, 16, 18 (prepipped), and 20(postpipped) of incubation and from 1 day and 3 wk posthatch and adult animals. In chickens, surfactant protein A mRNA was detected using Northern blot analysis in lung tissue at all stages sampled, appearing relatively earlier in development compared with placental mammals. Chickens were lavaged at days 16, 18, and 20 of incubation and 1 day posthatch, whereas bearded dragons were lavaged at day 55, days 57–60 (postpipped), and days 58–61 (posthatched). In both species, total phospholipid (PL) from the lavage increased throughout incubation. Disaturated PL (DSP) was not measurable before 16 days of incubation in the chick embryo nor before 55 days in bearded dragons. However, the percentage of DSP/PL increased markedly throughout late development in both species. Because cholesterol (Chol) remained unchanged, the Chol/PL and Chol/DSP ratios decreased in both species. Thus the Chol and PL components are differentially regulated. The lizard surfactant system develops and matures over a relatively shorter time than that of birds and mammals. This probably reflects the highly precocial nature of hatchling reptiles.


Author(s):  
S. K. Pena ◽  
C. B. Taylor ◽  
J. Hill ◽  
J. Safarik

Introduction: Oxidized cholesterol derivatives have been demonstrated in various cell cultures to be very potent inhibitors of 3-hvdroxy-3- methylglutaryl Coenzyme A reductase which is a principle regulator of cholesterol biosynthesis in the cell. The cholesterol content in the cells exposed to oxidized cholesterol was found to be markedly decreased. In aortic smooth muscle cells, the potency of this effect was closely related to the cytotoxicity of each derivative. Furthermore, due to the similarity of their molecular structure to that of cholesterol, these oxidized cholesterol derivatives might insert themselves into the cell membrane, alter membrane structure and function and eventually cause cell death. Arterial injury has been shown to be the initial event of atherosclerosis.


2021 ◽  
Vol 22 (5) ◽  
pp. 2776
Author(s):  
Selma Yilmaz Dejgaard ◽  
John F. Presley

Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and lipid droplets. There is a large recent body of work on these organelles, which have resulted in the introduction of new paradigms regarding the roles of membrane trafficking organelles. In this review, we discuss the roles of membrane trafficking in the life cycle of lipid droplets. This includes the complementary roles of lipid phase separation and proteins in the biogenesis of lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature lipid droplets to membranes by lipidic bridges and by more conventional protein tethers. We also discuss the catabolism of neutral lipids, which in part results from the interaction of lipid droplets with cytosolic molecules, but with important roles for both macroautophagy and microautophagy. Finally, we address their eventual demise, which involves interactions with the autophagocytotic machinery. We pay particular attention to the roles of small GTPases, particularly Rab18, in these processes.


2002 ◽  
Vol 12 (4) ◽  
pp. 487-494 ◽  
Author(s):  
Barbora Piknova ◽  
Vincent Schram ◽  
StephenB Hall

Sign in / Sign up

Export Citation Format

Share Document