Connections between thoraco-coxal proprioceptive afferents and motor neurons in the locust

2000 ◽  
Vol 203 (3) ◽  
pp. 435-445
Author(s):  
M. Wildman

The position of the coxal segment of the locust hind leg relative to the thorax is monitored by a variety of proprioceptors, including three chordotonal organs and a myochordotonal organ. The sensory neurons of two of these proprioceptors, the posterior joint chordotonal organ (pjCO) and the myochordotonal organ (MCO), have axons in the purely sensory metathoracic nerve 2C (N2C). The connections made by these afferents with metathoracic motor neurons innervating thoraco-coxal and wing muscles were investigated by electrical stimulation of N2C and by matching postsynaptic potentials in motor neurons with afferent spikes in N2C. Stretch applied to the anterior rotator muscle of the coxa (M121), with which the MCO is associated, evoked sensory spikes in N2C. Some of the MCO afferent neurons make direct excitatory chemical synaptic connections with motor neurons innervating the thoraco-coxal muscles M121, M126 and M125. Parallel polysynaptic pathways via unidentified interneurons also exist between MCO afferents and these motor neurons. Connections with the common inhibitor 1 neuron and motor neurons innervating the thoraco-coxal muscles M123/4 and wing muscles M113 and M127 are polysynaptic. Afferents of the pjCO also make polysynaptic connections with motor neurons innervating thoraco-coxal and wing muscles, but no evidence for monosynaptic pathways was found.

2002 ◽  
Vol 88 (5) ◽  
pp. 2387-2398 ◽  
Author(s):  
Ralph A. DiCaprio ◽  
Harald Wolf ◽  
Ansgar Büschges

Mechanosensory neurons exhibit a wide range of dynamic changes in response, including rapid and slow adaptation. In addition to mechanical factors, electrical processes may also contribute to sensory adaptation. We have investigated adaptation of afferent neurons in the stick insect femoral chordotonal organ (fCO). The fCO contains sensory neurons that respond to position, velocity, and acceleration of the tibia. We describe the influence of random mechanical stimulation of the fCO on the response of fCO afferent neurons. The activity of individual sensory neurons was recorded intracellularly from their axons in the main leg nerve. Most fCO afferents (93%) exhibited a marked decrease in response to trapezoidal stimuli following sustained white noise stimulation (bandwidth = 60 Hz, amplitudes from ±5 to ±30°). Concurrent decreases in the synaptic drive to leg motoneurons and interneurons were also observed. Electrical stimulation of spike activity in individual fCO afferents in the absence of mechanical stimulation also led to a dramatic decrease in response in 15 of 19 afferents tested. This indicated that electrical processes are involved in the regulation of the generator potential or encoding of action potentials and partially responsible for the decreased response of the afferents. Replacing Ca2+ with Ba2+ in the saline surrounding the fCO greatly reduced or blocked the decrease in response elicited by electrically induced activity or mechanical stimulation when compared with control responses. Our results indicate that activity of fCO sensory neurons strongly affects their sensitivity, most likely via Ca2+-dependent processes.


2001 ◽  
Vol 86 (5) ◽  
pp. 2583-2596 ◽  
Author(s):  
M.-J. Bourque ◽  
A. Kolta

Numerous evidence suggests that interneurons located in the lateral tegmentum at the level of the trigeminal motor nucleus contribute importantly to the circuitry involved in mastication. However, the question of whether these neurons participate actively to genesis of the rhythmic motor pattern or simply relay it to trigeminal motoneurons remains open. To answer this question, intracellular recordings were performed in an in vitro slice preparation comprising interneurons of the peritrigeminal area (PeriV) surrounding the trigeminal motor nucleus (NVmt) and the parvocellular reticular formation ventral and caudal to it (PCRt). Intracellular and extracellular injections of anterograde tracers were also used to examine the local connections established by these neurons. In 97% of recordings, electrical stimulation of adjacent areas evoked a postsynaptic potential (PSP). These PSPs were primarily excitatory, but inhibitory and biphasic responses were also induced. Most occurred at latencies longer than those required for monosynaptic transmission and were considered to involve oligosynaptic pathways. Both the anatomical and physiological findings show that all divisions of PeriV and PCRt are extensively interconnected. Most responses followed high-frequency stimulation (50 Hz) and showed little variability in latency indicating that the network reliably distributes inputs across all areas. In all neurons but one, excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs) were also elicited by stimulation of NVmt, suggesting the existence of excitatory and inhibitory interneurons within the motor nucleus. In a number of cases, these PSPs were reproduced by local injection of glutamate in lieu of the electrical stimulation. All EPSPs induced by stimulation of PeriV, PCRt, or NVmt were sensitive to ionotropic glutamate receptor antagonists 6-cyano-7-dinitroquinoxaline and d,l-2-amino-5-phosphonovaleric acid, while IPSPs were blocked by bicuculline and strychnine, antagonists of GABAA and glycine receptors. Examination of PeriV and PCRt intrinsic properties indicate that they form a fairly uniform network. Three types of neurons were identified on the basis of their firing adaptation properties. These types were not associated with particular regions. Only 5% of all neurons showed bursting behavior. Our results do not support the hypothesis that neurons of PeriV and PCRt participate actively to rhythm generation, but suggest instead that they are driven by rhythmical synaptic inputs. The organization of the network allows for rapid distribution of this rhythmic input across premotoneuron groups.


2000 ◽  
Vol 83 (6) ◽  
pp. 3209-3216 ◽  
Author(s):  
Jean-François Perrier ◽  
Boris Lamotte D'Incamps ◽  
Nezha Kouchtir-Devanne ◽  
Léna Jami ◽  
Daniel Zytnicki

The postsynaptic potentials elicited in peroneal motoneurons by either mechanical stimulation of cutaneous areas innervated by the superficial peroneal nerve (SP) or repetitive electrical stimulation of SP were compared in anesthetized cats. After denervation of the foot sparing only the territory of SP terminal branches, reproducible mechanical stimulations were applied by pressure on the plantar surface of the toes via a plastic disk attached to a servo-length device, causing a mild compression of toes. This stimulus evoked small but consistent postsynaptic potentials in every peroneal motoneuron. Weak stimuli elicited only excitatory postsynaptic potentials (EPSPs), whereas increase in stimulation strength allowed distinction of three patterns of response. In about one half of the sample, mechanical stimulation or trains of 20/s electric pulses at strengths up to six times the threshold of the most excitable fibers in the nerve evoked only EPSPs. Responses to electrical stimulation appeared with 3–7 ms central latencies, suggesting oligosynaptic pathways. In another, smaller fraction of the sample, inhibitory postsynaptic potentials (IPSPs) appeared with an increase of stimulation strength, and the last fraction showed a mixed pattern of excitation and inhibition. In 24 of 32 motoneurons where electrical and mechanical effects could be compared, the responses were similar, and in 6 others, they changed from pure excitation on mechanical stimulation to mixed on electrical stimulation. With both kinds of stimulation, stronger stimulations were required to evoke inhibitory postsynaptic potentials (IPSPs), which appeared at longer central latencies than EPSPs, indicating longer interneuronal pathways. The similarity of responses to mechanical and electrical stimulation in a majority of peroneal motoneurons suggests that the effects of commonly used electrical stimulation are good predictors of the responses of peroneal motoneurons to natural skin stimulation. The different types of responses to cutaneous afferents from SP territory reflect a complex connectivity allowing modulations of cutaneous reflex responses in various postures and gaits.


1997 ◽  
Vol 78 (3) ◽  
pp. 1363-1372 ◽  
Author(s):  
H. Straka ◽  
S. Biesdorf ◽  
N. Dieringer

Straka, H., S. Biesdorf, and N. Dieringer. Canal-specific excitation and inhibition of frog second-order vestibular neurons. J. Neurophysiol. 78: 1363–1372, 1997. Second-order vestibular neurons (2°VNs) were identified in the in vitro frog brain by their monosynaptic excitation following electrical stimulation of the ipsilateral VIIIth nerve. Ipsilateral disynaptic inhibitory postsynaptic potentials were revealed by bath application of the glycine antagonist strychnine or of the γ-aminobutyric acid-A (GABAA) antagonist bicuculline. Ipsilateral disynaptic excitatory postsynaptic potentials (EPSPs) were analyzed as well. The functional organization of convergent monosynaptic and disynaptic excitatory and inhibitory inputs onto 2°VNs was studied by separate electrical stimulation of individual semicircular canal nerves on the ipsilateral side. Most 2°VNs (88%) received a monosynaptic EPSP exclusively from one of the three semicircular canal nerves; fewer 2°VNs (10%) were monosynaptically excited from two semicircular canal nerves; and even fewer 2°VNs (2%) were monosynaptically excited from each of the three semicircular canal nerves. Disynaptic EPSPs were present in the majority of 2°VNs (68%) and originated from the same (homonymous) semicircular canal nerve that activated a monosynaptic EPSP in a given neuron (22%), from one or both of the other two (heteronymous) canal nerves (18%), or from all three canal nerves (28%). Homonymous activation of disynaptic EPSPs prevailed (74%) among those 2°VNs that exhibited disynaptic EPSPs. Disynaptic inhibitory postsynaptic potentials (IPSPs) were mediated in 90% of the tested 2°VNs by glycine, in 76% by GABA, and in 62% by GABA as well as by glycine. These IPSPs were activated almost exclusively from the same semicircular canal nerve that evoked the monosynaptic EPSP in a given 2°VN. Our results demonstrate a canal-specific, modular organization of vestibular nerve afferent fiber inputs onto 2°VNs that consists of a monosynaptic excitation from one semicircular canal nerve followed by disynaptic excitatory and inhibitory inputs originating from the homonymous canal nerve. Excitatory and inhibitory second-order (2°) vestibular interneurons are envisaged to form side loops that mediate spatially similar but dynamically different signals to 2° vestibular projection neurons. These feedforward side loops are suited to adjust the dynamic response properties of 2° vestibular projection neurons by facilitating or disfacilitating phasic and tonic input components.


1992 ◽  
Vol 67 (3) ◽  
pp. 664-679 ◽  
Author(s):  
P. Skorupski

1. This paper analyzes the synaptic connections made by nonspiking afferent neurons of the thoracocoxal muscle receptor organ (TCMRO) with basal limb motor neurons in the crayfish. The T fiber, a dynamically sensitive afferent, monosynaptically excites promotor motor neurons. Evidence suggests that both tonic graded chemical transmission and electrical synaptic transmission may be involved, depending on the motor neuron under consideration. 2. In preparations in the active state (spontaneously producing reciprocal motor patterns), the T fiber also inhibits promotor motor neurons in a phase-dependent manner. This inhibitory pathway is probably indirect, because it involves additional synaptic delay. 3. The statically sensitive S fiber also excites promotor motor neurons, but phase-dependent inhibition of promotor motor neurons by the S fiber was not seen. 4. The T fiber excites a subclass of remotor motor neurons (group 1) by a combination of direct chemical input and electrical input. This connection underlies the positive feedback reflex that excites these remotor motor neurons, in a phase-dependent manner, on stretch of the TCMRO during the active state. In inactive preparations, this connection remains subthreshold. 5. Central synaptic outputs of group 1 remotor motor neurons can also inhibit promotor motor neurons. This pathway may contribute to the phase-dependent reflex inhibition of promotor motor neurons that occurs in the active state.


1999 ◽  
Vol 16 (5) ◽  
pp. 889-893 ◽  
Author(s):  
STEPHEN A. GEORGE ◽  
GANG-YI WU ◽  
WEN-CHANG LI ◽  
SHU-RONG WANG

We analyzed postsynaptic potentials and dye-labeled morphology of tectal neurons responding to electrical stimulation of the optic nerve and of the nucleus isthmi in a reptile, Gekko gekko, in order to compare with previously reported interactions between the optic tectum and the nucleus isthmi in amphibians and birds. The results indicate that isthmic stimulation exerts inhibitory and excitatory actions on tectal cells, similar to dual isthmotectal actions in amphibians. It appears that dual actions of the isthmotectal pathway in amphibians and reptiles are shared by two subdivisions of the nucleus isthmi in birds. The morphology of tectal cells responding to isthmic stimulation is generally similar to that of tectoisthmic projecting neurons, but they differ particularly in that some tectoisthmic cells bear numerous varicosities whereas cells receiving isthmic afferents do not. Thus, it is likely that at least some tectoisthmic cells may not be in the population of tectal cells that can be affected by isthmic stimulation. Forty-four percent of injections resulted in dye-coupled labeling, suggesting extensive electrical connections between tectal cells in reptiles.


2003 ◽  
Vol 284 (1) ◽  
pp. G8-G14 ◽  
Author(s):  
Kirsteen N. Browning ◽  
David Mendelowitz

To understand vago-vagal reflexes, one must have an appreciation of the events surrounding the encoding, integration, and central transfer of peripheral sensations by vagal afferent neurons. A large body of work has shown that vagal afferent neurons have nonuniform properties and that distinct subpopulations of neurons exist within the nodose ganglia. These sensory neurons display a considerable degree of plasticity; electrophysiological, pharmacological, and neurochemical properties have all been shown to alter after peripheral tissue injury. The validity of claims of selective recordings from populations of neurons activated by peripheral stimuli may be diminished, however, by the recent demonstration that stimulation of a subpopulation of nodose neurons can enhance the activity of unstimulated neuronal neighbors. To better understand the neurophysiological processes occurring after vagal afferent stimulation, it is essential that the electrophysiological, pharmacological, and neurochemical properties of nodose neurons are correlated with their sensory function or, at the very least, with their specific innervation target.


Sign in / Sign up

Export Citation Format

Share Document