scholarly journals Formic acid modulates latency and accuracy of nestmate recognition in carpenter ants

Author(s):  
David Baracchi ◽  
Martin Giurfa ◽  
Patrizia d'Ettorre

Decision-making processes face the dilemma of being accurate or faster, a phenomenon that has been described as speed-accuracy trade-off in numerous studies on animal behaviour. In social insects, discriminating between colony members and aliens is subjected to this trade-off as rapid and accurate rejection of enemies is of primary importance for the maintenance and ecological success of insect societies. Recognition cues distinguishing aliens from nestmates are embedded in the cuticular hydrocarbon (CHC) layer and vary among colonies. In walking carpenter ants, exposure to formic acid (FA), an alarm pheromone, improves accuracy of nestmate recognition by decreasing both alien acceptance and nestmate rejection. Here we studied the effect of FA exposure on the spontaneous aggressive mandible opening response of harnessed Camponotus aethiops ants presented with either nestmate or alien CHCs. FA modulated both MOR accuracy and the latency to respond to odours of conspecifics. In particular, FA decreased MOR towards nestmates but increased it towards aliens. Furthermore, FA decreased MOR latency towards aliens but not towards nestmates. As response latency can be used as a proxy of response speed, we conclude that contrary to the prediction of the speed-accuracy trade-off theory, ants did not trade off speed against accuracy in the process of nestmate recognition.

2021 ◽  
Author(s):  
David Baracchi ◽  
Martin Giurfa ◽  
Patrizia d’Ettorre

AbstractDecision-making processes face the dilemma of being accurate or faster, a phenomenon that has been described as speed-accuracy trade-off (SAT) in numerous studies on animal behaviour. In social insects, discriminating between colony members and aliens is subjected to this trade-off as rapid and accurate rejection of enemies is of primary importance for the maintenance and ecological success of insect societies. Recognition cues distinguishing aliens from nestmates are embedded in the cuticular hydrocarbon (CHC) layer and vary among colonies. In walking carpenter ants, exposure to formic acid (FA), an alarm pheromone, improves accuracy of nestmate recognition by decreasing both alien acceptance and nestmate rejection. Here we studied the effect of FA exposure on the spontaneous aggressive mandible opening response of harnessed Camponotus aethiops ants presented with either nestmate or alien CHCs. FA modulated both MOR accuracy and the latency to respond to odours of conspecifics. In particular, FA decreased MOR towards nestmates but increased it towards aliens. Furthermore, FA decreased MOR latency towards aliens but not towards nestmates. As response latency can be used as a proxy of response speed, we conclude that contrary to the prediction of the SAT theory, ants did not trade off speed against accuracy in the process of nestmate recognition.Summary statementExposure to an alarm pheromone increases both latency and accuracy of the response to recognition cues in ants


1983 ◽  
Vol 5 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Janet L. Starkes ◽  
Fran Allard

Volleyball players and nonplayers were compared for speed and accuracy of performance in a task involving detection of the presence of a volleyball in rapidly presented slides of a volleyball situation. Slides depicted both game and nongame situations, and subjects performed the task in both noncompetitive and competitive conditions. For all subjects, game information was perceived more quickly and accurately than nongame information. In competition all subjects showed decreased perceptual accuracy and no change in criterion, supporting the Easterbrook (1959) notion of perceptual narrowing with stress. Very large accompanying increases in response speed, however, suggested that competition may induce adoption of a particular speed-accuracy trade-off. Cognitive flexibility in the adoption of particular speed-accuracy trade-offs is discussed with reference to volleyball.


2010 ◽  
Vol 31 (3) ◽  
pp. 130-137 ◽  
Author(s):  
Hagen C. Flehmig ◽  
Michael B. Steinborn ◽  
Karl Westhoff ◽  
Robert Langner

Previous research suggests a relationship between neuroticism (N) and the speed-accuracy tradeoff in speeded performance: High-N individuals were observed performing less efficiently than low-N individuals and compensatorily overemphasizing response speed at the expense of accuracy. This study examined N-related performance differences in the serial mental addition and comparison task (SMACT) in 99 individuals, comparing several performance measures (i.e., response speed, accuracy, and variability), retest reliability, and practice effects. N was negatively correlated with mean reaction time but positively correlated with error percentage, indicating that high-N individuals tended to be faster but less accurate in their performance than low-N individuals. The strengthening of the relationship after practice demonstrated the reliability of the findings. There was, however, no relationship between N and distractibility (assessed via measures of reaction time variability). Our main findings are in line with the processing efficiency theory, extending the relationship between N and working style to sustained self-paced speeded mental addition.


2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.


Author(s):  
William S. Evans ◽  
Robert Cavanaugh ◽  
Yina Quique ◽  
Emily Boss ◽  
Jeffrey J. Starns ◽  
...  

Purpose The purpose of this study was to develop and pilot a novel treatment framework called BEARS (Balancing Effort, Accuracy, and Response Speed). People with aphasia (PWA) have been shown to maladaptively balance speed and accuracy during language tasks. BEARS is designed to train PWA to balance speed–accuracy trade-offs and improve system calibration (i.e., to adaptively match system use with its current capability), which was hypothesized to improve treatment outcomes by maximizing retrieval practice and minimizing error learning. In this study, BEARS was applied in the context of a semantically oriented anomia treatment based on semantic feature verification (SFV). Method Nine PWA received 25 hr of treatment in a multiple-baseline single-case series design. BEARS + SFV combined computer-based SFV with clinician-provided BEARS metacognitive training. Naming probe accuracy, efficiency, and proportion of “pass” responses on inaccurate trials were analyzed using Bayesian generalized linear mixed-effects models. Generalization to discourse and correlations between practice efficiency and treatment outcomes were also assessed. Results Participants improved on naming probe accuracy and efficiency of treated and untreated items, although untreated item gains could not be distinguished from the effects of repeated exposure. There were no improvements on discourse performance, but participants demonstrated improved system calibration based on their performance on inaccurate treatment trials, with an increasing proportion of “pass” responses compared to paraphasia or timeout nonresponses. In addition, levels of practice efficiency during treatment were positively correlated with treatment outcomes, suggesting that improved practice efficiency promoted greater treatment generalization and improved naming efficiency. Conclusions BEARS is a promising, theoretically motivated treatment framework for addressing the interplay between effort, accuracy, and processing speed in aphasia. This study establishes the feasibility of BEARS + SFV and provides preliminary evidence for its efficacy. This study highlights the importance of considering processing efficiency in anomia treatment, in addition to performance accuracy. Supplemental Material https://doi.org/10.23641/asha.14935812


2015 ◽  
Vol 282 (1806) ◽  
pp. 20142838 ◽  
Author(s):  
Fernando Esponda ◽  
Deborah M. Gordon

We propose a distributed model of nestmate recognition, analogous to the one used by the vertebrate immune system, in which colony response results from the diverse reactions of many ants. The model describes how individual behaviour produces colony response to non-nestmates. No single ant knows the odour identity of the colony. Instead, colony identity is defined collectively by all the ants in the colony. Each ant responds to the odour of other ants by reference to its own unique decision boundary, which is a result of its experience of encounters with other ants. Each ant thus recognizes a particular set of chemical profiles as being those of non-nestmates. This model predicts, as experimental results have shown, that the outcome of behavioural assays is likely to be variable, that it depends on the number of ants tested, that response to non-nestmates changes over time and that it changes in response to the experience of individual ants. A distributed system allows a colony to identify non-nestmates without requiring that all individuals have the same complete information and helps to facilitate the tracking of changes in cuticular hydrocarbon profiles, because only a subset of ants must respond to provide an adequate response.


Sign in / Sign up

Export Citation Format

Share Document