Dual Goals for Speed and Accuracy on the Same Performance Task

2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.

1983 ◽  
Vol 5 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Janet L. Starkes ◽  
Fran Allard

Volleyball players and nonplayers were compared for speed and accuracy of performance in a task involving detection of the presence of a volleyball in rapidly presented slides of a volleyball situation. Slides depicted both game and nongame situations, and subjects performed the task in both noncompetitive and competitive conditions. For all subjects, game information was perceived more quickly and accurately than nongame information. In competition all subjects showed decreased perceptual accuracy and no change in criterion, supporting the Easterbrook (1959) notion of perceptual narrowing with stress. Very large accompanying increases in response speed, however, suggested that competition may induce adoption of a particular speed-accuracy trade-off. Cognitive flexibility in the adoption of particular speed-accuracy trade-offs is discussed with reference to volleyball.


2018 ◽  
Vol 51 (1) ◽  
pp. 40-60 ◽  
Author(s):  
Heinrich René Liesefeld ◽  
Markus Janczyk

2006 ◽  
Vol 3 (10) ◽  
pp. 649-654 ◽  
Author(s):  
Dan Beamish ◽  
Shabana Ali Bhatti ◽  
I. Scott MacKenzie ◽  
Jianhong Wu

An intrinsic property of human motor behaviour is a trade-off between speed and accuracy. This is classically described by Fitts' law, a model derived by assuming the human body has a limited capacity to transmit information in organizing motor behaviour. Here, we propose an alternative foundation, based on the neurodynamics of the motor circuit, wherein Fitts' law is an approximation to a more general relationship. In this formulation, widely observed inconsistencies with experimental data are a consequence of psychomotor delay. The methodology developed additionally provides a method to estimate the delay within the motor circuit from the speed-accuracy trade-off alone.


2019 ◽  
Vol 9 (4) ◽  
pp. 41 ◽  
Author(s):  
Wu ◽  
Struys ◽  
Lochtman

The effect of bilingualism on inhibition control is increasingly under ongoing exploration. The present study primarily investigated the effect of within bilingual factors (i.e., dominance types of Uyghur-Chinese bilinguals) on a Stimulus-Stimulus task (Flanker) and a Stimulus-Response task (Simon). We also compared the bilinguals' performance on each type of cognitive control task in respect to a possible trade-off between speed and accuracy. The findings showed no explicit differences on performance in response time or accuracy among balanced, L1-dominant and L2-dominant bilinguals but balanced bilinguals demonstrated a significant speed-accuracy trade-off in the overall context switching between non-conflict and conflict trials in both cognitive control tasks where monitoring process is highly demanded. Additionally, all bilinguals across all language dominance types showed a trade-off strategy in inhibition during a Stimulus-Stimulus conflict (flanker task). This evidence indicates that the differences of within bilinguals in cognitive control could lie in the monitoring process, while for all bilinguals, inhibition during a Stimulus-Stimulus conflict could be a major component in the mechanism of bilingual language processing.


1997 ◽  
Vol 20 (2) ◽  
pp. 306-307 ◽  
Author(s):  
Willem P. De Jong ◽  
Gerard P. Van Galen

Notwithstanding its overwhelming descriptive power for existing data, it is not clear whether the kinematic theory of Plamondon & Alimi could generate new insights into biomechanical constraints and psychological processes underlying the way organisms trade off speed for accuracy. The kinematic model should elaborate on the role of neuromotor noise and on biomechanical strategies for reducing endpoint variability related to such noise.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Jan Drugowitsch ◽  
Gregory C DeAngelis ◽  
Dora E Angelaki ◽  
Alexandre Pouget

For decisions made under time pressure, effective decision making based on uncertain or ambiguous evidence requires efficient accumulation of evidence over time, as well as appropriately balancing speed and accuracy, known as the speed/accuracy trade-off. For simple unimodal stimuli, previous studies have shown that human subjects set their speed/accuracy trade-off to maximize reward rate. We extend this analysis to situations in which information is provided by multiple sensory modalities. Analyzing previously collected data (<xref ref-type="bibr" rid="bib4">Drugowitsch et al., 2014</xref>), we show that human subjects adjust their speed/accuracy trade-off to produce near-optimal reward rates. This trade-off can change rapidly across trials according to the sensory modalities involved, suggesting that it is represented by neural population codes rather than implemented by slow neuronal mechanisms such as gradual changes in synaptic weights. Furthermore, we show that deviations from the optimal speed/accuracy trade-off can be explained by assuming an incomplete gradient-based learning of these trade-offs.


Author(s):  
Gary W Gerald ◽  
Emma D Wass

Abstract Trade-offs among performance traits are often difficult to detect despite the physiological and morphological incompatibilities that underlie disparate traits being well understood. However, recent studies that have corrected for individual quality have found trade-offs in human athletes performing various performance tasks. Few studies have found trade-offs among multiple performance tasks after correcting for individual quality in non-human animals because of the difficulty in motivating many animals to perform biomechanically different tasks. We examined potential trade-offs in maximal speeds among ten locomotor conditions that involved the utilization of different locomotor modes in cornsnakes (Pantherophis guttatus). Snakes were assessed during terrestrial lateral undulation, swimming, concertina movements (small and large width) and six conditions of arboreal locomotion (combinations of three perch diameters and two inclines). We found no trade-offs among locomotor conditions when analysing uncorrected speeds or speeds corrected for body condition. However, we found several trade-offs among modes and treatments for speeds corrected for individual quality. Terrestrial lateral undulation speeds were negatively related to speeds of concertina and two of the arboreal locomotion conditions. A trade-off between speeds on large and small perch diameters on a 30° incline was also detected and probably reflects potential conflicts in traits that maximize lateral undulation and concertina.


2011 ◽  
Vol 105 (6) ◽  
pp. 2668-2674 ◽  
Author(s):  
Arne J. Nagengast ◽  
Daniel A. Braun ◽  
Daniel M. Wolpert

When a racing driver steers a car around a sharp bend, there is a trade-off between speed and accuracy, in that high speed can lead to a skid whereas a low speed increases lap time, both of which can adversely affect the driver's payoff function. While speed-accuracy trade-offs have been studied extensively, their susceptibility to risk sensitivity is much less understood, since most theories of motor control are risk neutral with respect to payoff, i.e., they only consider mean payoffs and ignore payoff variability. Here we investigate how individual risk attitudes impact a motor task that involves such a speed-accuracy trade-off. We designed an experiment where a target had to be hit and the reward (given in points) increased as a function of both subjects' endpoint accuracy and endpoint velocity. As faster movements lead to poorer endpoint accuracy, the variance of the reward increased for higher velocities. We tested subjects on two reward conditions that had the same mean reward but differed in the variance of the reward. A risk-neutral account predicts that subjects should only maximize the mean reward and hence perform identically in the two conditions. In contrast, we found that some (risk-averse) subjects chose to move with lower velocities and other (risk-seeking) subjects with higher velocities in the condition with higher reward variance (risk). This behavior is suboptimal with regard to maximizing the mean number of points but is in accordance with a risk-sensitive account of movement selection. Our study suggests that individual risk sensitivity is an important factor in motor tasks with speed-accuracy trade-offs.


2020 ◽  
Vol 12 ◽  
Author(s):  
Yauhen Statsenko ◽  
Tetiana Habuza ◽  
Klaus Neidl-Van Gorkom ◽  
Nazar Zaki ◽  
Taleb M. Almansoori

Background: The current study examines the relationship between speed and accuracy of performance in a reaction time setting and explores the informative value of the inverse efficiency score (IES) regarding the possibility to reflect age-related cognitive changes.Objectives: To study the characteristics of speed and accuracy while performing psychophysiological tests throughout the lifespan; to examine the speed-accuracy ratio in age groups and to apply IES to discriminative visual-motor reaction task; and to figure out the predictive potential of psychophysiological tests to identify IES values.Methods: We utilize nonparametric statistical tests, regression analysis, and supervised machine learning methods.Results and Conclusion: The examinees under 20 and over 60 years of age share one tendency regarding the speed-accuracy ratio without speed-accuracy trade-off. Both at the time of active developmental changes in adolescence and during ongoing atrophic changes in elderly there is a tendency toward a rise of the number of mistakes while slowing the reaction. In the age range from 20 to 60 the relationship between the speed and accuracy is opposite and speed-accuracy trade-off is present. In our battery, complex visual-motor reaction is the only test with the significant negative association between reaction time and error rate in the subcohort of young and midlife adults taken together. On average, women perform more slowly and accurately than men in the speed-accuracy task, however most of the gender-related differences are insignificant. Using results of other psychophysiological tests, we predicted IES values for the visual-motor reaction with high accuracy (R2 = 0.77 ± 0.08; mean absolute error / IES range = 3.37%). The regression model shows the best performance in the cognitively preserved population groups of young and middle-aged adults (20–60 years). Because of the individual rate of neurodevelopment in youth and cognitive decline in the elderly, the regression model for these subcohorts has a low predictive performance. IES accounts for different cognitive subdomains and may reflect their disproportional changes throughout the lifespan. This encourages us to proceed to explore the combination of executive functioning and psychophysiological test results utilizing machine learning models. The latter can be designed as a reliable computer-aided detector of cognitive changes at early stages.


Assessment ◽  
2021 ◽  
pp. 107319112098560
Author(s):  
Tamar Bakun Emesh ◽  
Dror Garbi ◽  
Alon Kaplan ◽  
Hila Zelicha ◽  
Anat Yaskolka Meir ◽  
...  

Cognitive tasks borrowed from experimental psychology are often used to assess individual differences. A cardinal issue of this transition from experimental to correlational designs is reduced retest reliability of some well-established cognitive effects as well as speed–accuracy trade-off. The present study aimed to address these issues by examining the retest reliability of various methods for speed–accuracy integration and by comparing between two types of task modeling: difference scores and residual scores. Results from three studies on executive functions show that (a) integrated speed–accuracy scoring is generally more reliable as compared with nonintegrated methods: mean response time and accuracy; and (b) task modeling, especially residual scores, reduced reliability. We thus recommend integrating speed and accuracy, at least for measuring executive functions.


Sign in / Sign up

Export Citation Format

Share Document