Changes in Blood Pressure in the Rainbow Trout During Hypoxia

1967 ◽  
Vol 46 (2) ◽  
pp. 297-305 ◽  
Author(s):  
G. F. HOLETON ◽  
D. J. RANDALL

1. Methods for cannulating the ventral aorta of the trout, which permit the measurement of blood pressure in the unanaesthetized, unrestrained, intact fish are described. 2. Rate and amplitude of breathing and blood pressure in the dorsal and ventral aortae increase during hypoxia. These changes are associated with a marked bradycardia. 3. There are increases in vascular resistance to blood flow in both respiratory and systemic circulations during hypoxia. 4. Post hypoxia is associated with large increases in ventral aortic and dorsal aortic pressures.

2008 ◽  
Vol 294 (5) ◽  
pp. R1648-R1656 ◽  
Author(s):  
Henrik Seth ◽  
Erik Sandblom ◽  
Susanne Holmgren ◽  
Michael Axelsson

When animals feed, blood flow to the gastrointestinal tract increases to ensure an adequate oxygen supply to the gastrointestinal tissue and an effective absorption of nutrients. In mammals, this increase depends on the chemical properties of the food, as well as, to some extent, on the mechanical distension of the stomach wall. By using an inflatable nitrile balloon positioned in the stomach, we investigated the cardiovascular responses to mechanical stretch of the stomach wall in rainbow trout ( Oncorhynchus mykiss). Distension with a volume equivalent to a meal of 2% of the body mass increased dorsal aortic blood pressure by up to 29%, and central venous blood pressure increased transiently nearly fivefold. The increase in arterial pressure was mediated by an increased vascular resistance of both the systemic and the intestinal circulation. Cardiac output, heart rate, and stroke volume (SV) did not change, and only transient changes in gut blood flow were observed. The increase in arterial pressure was abolished by the α-adrenergic antagonist prazosin, indicating an active adrenergic vasoconstriction, whereas the venous pressor response could be the consequence of a passive increase in intraperitoneal pressure. Our results show that mechanical distension of the stomach causes an instantaneous increase in general vascular resistance, which may facilitate a redistribution of blood to the gastrointestinal tract when chemical stimuli from a meal induce vasodilation in the gut circulation. The normal postprandial increase in gut blood flow in teleosts is, therefore, most likely partly dependent on mechanical stimuli, as well as on chemical stimuli.


1967 ◽  
Vol 46 (2) ◽  
pp. 307-315 ◽  
Author(s):  
E. DON STEVENS ◽  
D. J. RANDALL

1. Changes in blood pressure in the dorsal aorta, ventral aorta and subintestinal vein, as well as changes in heart rate and breathing rate during moderate swimming activity in the rainbow trout are reported. 2. Blood pressures both afferent and efferent to the gills increased during swimming and then returned to normal levels within 30 min. after exercise. 3. Venous blood pressure was characterized by periodic increases during swimming. The pressure changes were not in phase with the body movements. 4. Although total venous return to the heart increased during swimming, a decreased blood flow was recorded in the subintestinal vein. 5. Heart rate and breathing rate increased during swimming and then decreased when swimming ceased. 6. Some possible mechanisms regulating heart and breathing rates are discussed.


1979 ◽  
Vol 46 (2) ◽  
pp. 288-292 ◽  
Author(s):  
Y. A. Mengesha ◽  
G. H. Bell

Ten to fifteen healthy subjects, ages 18--30 yr, were used to assess the correlation of forearm blood flow with graded passive body tilts and vascular resistance and also to discern the relative effects of body tilts on finger blood flow. In the head-up tilts forearm blood flow and arterial blood pressure fell progressively, whereas forearm vascular resistance and pulse rate increased. In the head-down tilts the forearm blood flow and the arterial blood pressure increased, whereas the forearm vascular resistance and pulse rate decreased. These changes were found to be significantly correlated with the different tilt angles and with one another. In a preliminary study it was found that infrared heating of the carpometacarpal region produced finger vasodilatation similar to the forearm vasodilatation observed by Crockford and Hellon (6). However, unlike forearm blood flow, finger blood flow showed no appreciable response to either the head-up or head-down tilts. This indicates that the sympathetic tone and the volume of blood in the finger are not appreciably altered by this test procedure at least 1 min after the body tilt is assumed.


2002 ◽  
Vol 93 (6) ◽  
pp. 1966-1972 ◽  
Author(s):  
Maria T. E. Hopman ◽  
Jan T. Groothuis ◽  
Marcel Flendrie ◽  
Karin H. L. Gerrits ◽  
Sibrand Houtman

The purpose of the present study was to determine the effect of a spinal cord injury (SCI) on resting vascular resistance in paralyzed legs in humans. To accomplish this goal, we measured blood pressure and resting flow above and below the lesion (by using venous occlusion plethysmography) in 11 patients with SCI and in 10 healthy controls (C). Relative vascular resistance was calculated as mean arterial pressure in millimeters of mercury divided by the arterial blood flow in milliliters per minute per 100 milliliters of tissue. Arterial blood flow in the sympathetically deprived and paralyzed legs of SCI was significantly lower than leg blood flow in C. Because mean arterial pressure showed no differences between both groups, leg vascular resistance in SCI was significantly higher than in C. Within the SCI group, arterial blood flow was significantly higher and vascular resistance significantly lower in the arms than in the legs. To distinguish between the effect of loss of central neural control vs. deconditioning, a group of nine SCI patients was trained for 6 wk and showed a 30% increase in leg blood flow with unchanged blood pressure levels, indicating a marked reduction in vascular resistance. In conclusion, vascular resistance is increased in the paralyzed legs of individuals with SCI and is reversible by training.


1991 ◽  
Vol 261 (1) ◽  
pp. H172-H180 ◽  
Author(s):  
L. M. Sassen ◽  
K. Bezstarosti ◽  
W. J. Van der Giessen ◽  
J. M. Lamers ◽  
P. D. Verdouw

Effects of pretreatment with L-propionylcarnitine (50 mg/kg, n = 9) or saline (n = 10) were studied in open-chest anesthetized pigs, in which ischemia was induced by decreasing left anterior descending coronary artery blood flow to 20% of baseline. After 60 min of ischemia, myocardium was reperfused for 2 h. In both groups, flow reduction abolished contractile function of the affected myocardium and caused similar decreases in ATP (by 55%) and energy charge [(ATP + 0.5ADP)/(ATP + ADP + AMP); decrease from 0.91 to 0.60], mean arterial blood pressure (by 10-24%), the maximum rate of rise in left ventricular pressure (by 26-32%), and cardiac output (by 20-30%). During reperfusion, “no-reflow” was attenuated by L-propionylcarnitine, because myocardial blood flow returned to 61 and 82% of baseline in the saline- and L-propionylcarnitine-treated animals, respectively. Cardiac output of the saline-treated animals further decreased (to 52% of baseline), and systemic vascular resistance increased from 46 +/- 3 to 61 +/- 9 mmHg.min.l-1, thereby maintaining arterial blood pressure. In L-propionylcarnitine-treated pigs, cardiac output remained at 75% of baseline, and systemic vascular resistance decreased from 42 +/- 3 to 38 +/- 4 mmHg.min.l-1. In both groups, energy charge but not the ATP level of the ischemic-reperfused myocardium tended to recover, whereas the creatine phosphate level showed significantly more recovery in saline-treated animals. We conclude that L-propionylcarnitine partially preserved vascular patency in ischemic-reperfused porcine myocardium but had no immediate effect on “myocardial stunning.” Potential markers for long-term recovery were not affected by L-propionylcarnitine.


1998 ◽  
Vol 275 (2) ◽  
pp. H680-H688 ◽  
Author(s):  
Linda Keyes ◽  
David M. Rodman ◽  
Douglas Curran-Everett ◽  
Kenneth Morris ◽  
Lorna G. Moore

Decreased vascular resistance and vasoconstrictor response during pregnancy enables an increase in cardiac output and regional blood flow to the uterine circulation. We sought to determine whether inhibition of vascular smooth muscle ATP-sensitive potassium ([Formula: see text]) channel activity during pregnancy increased systemic and/or regional vascular resistance and resistance response to ANG II. A total of 32 catheterized, awake, pregnant or nonpregnant guinea pigs were treated with either the [Formula: see text]channel inhibitor glibenclamide (3.5 mg/kg) or vehicle (DMSO) ( n = 8/group). In nonpregnant and pregnant animals, glibenclamide raised blood pressure and systemic, uterine, and coronary vascular resistance, diminishing cardiac output and organ blood flow. Glibenclamide produced a greater rise in coronary vascular resistance in the pregnant than nonpregnant groups and increased renal and cerebral vascular resistance in the pregnant animals only. ANG II infusion raised blood pressure and systemic and renal vascular resistance and lowered cardiac output and renal blood flow in vehicle-treated animals. Glibenclamide augmented ANG II-induced systemic vasoconstriction in the nonpregnant and pregnant groups and the rise in uteroplacental vascular resistance in the pregnant animals. We concluded that [Formula: see text] channel activity likely modulates systemic, uterine, and coronary vascular resistance and opposes ANG II-induced systemic vasoconstriction in nonpregnant and pregnant guinea pigs. Pregnancy augments[Formula: see text] channel activity in the uterine, coronary, renal, and cerebral vascular beds and the uteroplacental circulation during ANG II infusion. Thus increased[Formula: see text] channel activity appears to influence regional control of vascular resistance during guinea pig pregnancy but cannot account for the characteristic decrease in systemic vascular resistance and ANG II-induced systemic vasoconstrictor response.


1975 ◽  
Vol 79 (2) ◽  
pp. 337-350 ◽  
Author(s):  
Per Olof Janson ◽  
Ivan Albrecht ◽  
Kurt Ahrén

ABSTRACT In the search for data supporting the hypothesis that the luteolytic effect of prostaglandins (PG) is initiated by a vascular mechanism, some haemodynamic parameters including ovarian blood flow and vascular resistance were measured in pseudopregnant anaesthetized rabbits before and after exogenous administration of PGF2α. The measurements were performed on days 5–10 of pseudopregnancy induced by 500 IU HCG iv. Infusion of 50 μg/kg PGF2α iv over a one-minute period caused significant falls in cardiac output, heart rate and blood pressure after 1–3 min. Blood pressure and cardiac output were normalized after 16–49 min. Blood flow in the ovarian vein (direct measurements) decreased and returned to initial values parallel to the blood pressure and no change in resistance in the vascular bed drained by the vein was noted. Total ovarian blood flow and resistance, as measured in surgically intact ovaries before and after PG infusion, using 35 or 15 μm 169Yb and 46Sc-labelled microspheres, changed and remained constant respectively, according to the same pattern as in the direct measurements. The distribution of blood flow between the corpora lutea and the interstitial tissue of the ovary measured by 15 μm radioactive microspheres. PGF2α caused an interstitial vasodilation whereas no significant change in luteal vascular resistance was noted. Since luteal blood flow represented a predominant part of total ovarian flow in the type of ovary studied, the interstitial vasodilatation caused only negligible changes in blood flow to the whole ovary. The present study does not support the hypothesis of a PG-induced luteal blood flow reduction preceding luteolysis. The possible significance of the interstitial vasodilatation for luteal function remains to be elucidated.


1998 ◽  
Vol 85 (4) ◽  
pp. 1285-1291 ◽  
Author(s):  
Sandrine H. Launois ◽  
Joseph H. Abraham ◽  
J. Woodrow Weiss ◽  
Debra A. Kirby

Patients with obstructive sleep apnea experience marked cardiovascular changes with apnea termination. Based on this observation, we hypothesized that sudden sleep disruption is accompanied by a specific, patterned hemodynamic response, similar to the cardiovascular defense reaction. To test this hypothesis, we recorded mean arterial blood pressure, heart rate, iliac blood flow and vascular resistance, and renal blood flow and vascular resistance in five pigs instrumented with chronic sleep electrodes. Cardiovascular parameters were recorded during quiet wakefulness, during non-rapid-eye-movement and rapid-eye-movement sleep, and during spontaneous and induced arousals. Iliac vasodilation (iliac vascular resistance decreased by −29.6 ± 4.1% of baseline) associated with renal vasoconstriction (renal vascular resistance increased by 10.3 ± 4.0%), tachycardia (heart rate increase: +23.8 ± 3.1%), and minimal changes in mean arterial blood pressure were the most common pattern of arousal response, but other hemodynamic patterns were observed. Similar findings were obtained in rapid-eye-movement sleep and for acoustic and tactile arousals. In conclusion, spontaneous and induced arousals from sleep may be associated with simultaneous visceral vasoconstriction and hindlimb vasodilation, but the response is variable.


1996 ◽  
Vol 271 (1) ◽  
pp. H203-H211 ◽  
Author(s):  
H. Bitterman ◽  
V. Brod ◽  
G. Weisz ◽  
D. Kushnir ◽  
N. Bitterman

This study investigated mechanisms of the hemodynamic effects of oxygen in hemorrhagic shock induced by bleeding 30% of the total blood volume in anesthetized rats. An ultrasonic flowmeter was used to monitor regional blood flow. Changes in tissue perfusion were assessed by the laser-Doppler technique. The inhalation of 100% oxygen induced a significant increase in mean arterial blood pressure (MABP) and vascular resistance in the hindquarters, with a concomitant decrease in blood flow in the distal aorta and biceps femoris muscle. In contrast, oxygen did not change vascular resistance in the superior mesenteric artery (SMA) and renal beds and induced a significant increase in blood flow to the renal artery, SMA, and small bowel in hemorrhaged rats. L-Arginine (100 mg/kg iv) but not D-arginine or the vehicle (0.9% NaCl) completely abolished the effects of oxygen on blood pressure and reversed its effects on blood flow and resistance in the hindquarters and biceps femoris muscle. Administration of the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (50 mg/kg iv) significantly increased MABP and the resistance in the three vascular beds. Pretreatment of hemorrhaged rats with a superoxide dismutase mimic, the NO-stable radical 2,2,6,6-tetramethylpiperidine-N-oxyl (5 mg/kg iv), resulted in significantly diminished effects of oxygen on hindquarter hemodynamics. These results demonstrate a differential effect of oxygen, which increases vascular resistance in the hindquarters without a significant effect in the splanchnic and renal beds, thus favoring an increase in splanchnic and renal perfusion. It is suggested that inactivation of NO by reactive oxygen species may underlie the effects of oxygen on hindquarter vascular tone during shock.


1986 ◽  
Vol 251 (5) ◽  
pp. H897-H902
Author(s):  
D. Neisius ◽  
J. M. Wood ◽  
K. G. Hofbauer

The relative importance of angiotensin II for the renal vasodilatory response after converting-enzyme inhibition was evaluated by a comparison of the effects of converting-enzyme and renin inhibition on renal vascular resistance. Renal, mesenteric, and hindquarter blood flows were measured with chronically implanted ultrasonic-pulsed Doppler flow probes in conscious, mildly volume-depleted marmosets after administration of a converting-enzyme inhibitor (enalaprilat, 2 mg/kg iv), a synthetic renin inhibitor (CGP 29,287, 1 mg/kg iv), or a renin-inhibitory monoclonal antibody (R-3-36-16, 0.1 mg/kg iv). Enalaprilat reduced blood pressure (-16 +/- 4 mmHg, n = 6) and induced a selective increase in renal blood flow (27 +/- 8%, n = 6). CGP 29,287 and R-3-36-16 induced comparable reductions in blood pressure (-16 +/- 4 mmHg, n = 6 and -20 +/- 4 mmHg, n = 5, respectively) and selective increases in renal blood flow (36 +/- 12%, n = 6 and 34 +/- 16%, n = 4, respectively). The decrease in renal vascular resistance was of similar magnitude for all of the inhibitors (enalaprilat -28 +/- 3%, CGP 29,287 -32 +/- 6%; and R-3-36-16 -33 +/- 7%). These results indicate that the renal vasodilatation induced after converting-enzyme or renin inhibition is mainly due to decreased formation of angiotensin II.


Sign in / Sign up

Export Citation Format

Share Document