In situ architecture of the ciliary base reveals the stepwise assembly of IFT trains

2021 ◽  
Author(s):  
Nicola Stevenson
Keyword(s):  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Amani Chrouda ◽  
Mohamed Braiek ◽  
Karima Bekir Rokbani ◽  
Amina Bakhrouf ◽  
Abderrazak Maaref ◽  
...  

The objective of this work is to elaborate an immunosensing system which will detect and quantify Staphylococcus aureus bacteria. A gold electrode was modified by electrografting of 4-nitrophenyl diazonium, in situ synthesized in acidic aqueous solution. The immunosensor was fabricated by immobilizing affinity-purified polyclonal anti S. aureus antibodies on the modified gold electrode. Cyclic voltammetry (CV) and Faradaic Electrochemical Impedance Spectroscopy (EIS) were employed to characterize the stepwise assembly of the immunosensor. The performance of the developed immunosensor was evaluated by monitoring the electron-transfer resistance detected using Faradaic EIS. The experimental results indicated a linear relationship between the relative variation of the electron transfer resistance and the logarithmic value of S. aureus concentration, with a slope of 0.40 ± 0.08 per decade of concentration. A low quantification limit of 10±2 CFU per ml and a linear range up to 107±2×106 CFU per mL were obtained. The developed immunosensors showed high selectivity to Escherichia coli and Staphylococcus saprophyticus.


2010 ◽  
Vol 46 (32) ◽  
pp. 5948 ◽  
Author(s):  
Philip C. Andrews ◽  
William J. Gee ◽  
Peter C. Junk ◽  
Harald Krautscheid ◽  
Jonathan G. MacLellan

2021 ◽  
Author(s):  
Hugo van den Hoek ◽  
Nikolai Klena ◽  
Mareike A Jordan ◽  
Gonzalo Alvarez Viar ◽  
Miroslava Schaffer ◽  
...  

The cilium is an antenna-like organelle that performs numerous cellular functions, including motility, sensing, and signaling. The base of the cilium contains a selective barrier that regulates the entry of large intraflagellar transport (IFT) trains, which carry cargo proteins required for ciliary assembly and maintenance. However, the native architecture of the ciliary base and the process of IFT train assembly remain unresolved. Here, we use in situ cryo-electron tomography to reveal native structures of the transition zone region and assembling IFT trains at the ciliary base. We combine this direct cellular visualization with ultrastructure expansion microscopy to describe the front-to-back stepwise assembly of IFT trains: IFT-B forms the backbone, onto which IFT-A, then dynein-1b, and finally kinesin-2 sequentially bind before entry into the cilium.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document