intraflagellar transport
Recently Published Documents


TOTAL DOCUMENTS

637
(FIVE YEARS 190)

H-INDEX

84
(FIVE YEARS 9)

2022 ◽  
Vol 221 (2) ◽  
Author(s):  
Bryony Braschi ◽  
Heymut Omran ◽  
George B. Witman ◽  
Gregory J. Pazour ◽  
K. Kevin Pfister ◽  
...  

Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hantian Qiu ◽  
Yuta Tsurumi ◽  
Yohei Katoh ◽  
Kazuhisa Nakayama

AbstractCilia play crucial roles in sensing and transducing extracellular signals. Bidirectional protein trafficking within cilia is mediated by the intraflagellar transport (IFT) machinery containing IFT-A and IFT-B complexes, with the aid of kinesin-2 and dynein-2 motors. The dynein-2 complex drives retrograde trafficking of the IFT machinery after its transportation to the ciliary tip as an IFT cargo. Mutations in genes encoding the dynein-2-specific subunits (DYNC2H1, WDR60, WDR34, DYNC2LI1, and TCTEX1D2) are known to cause skeletal ciliopathies. We here demonstrate that several pathogenic variants of DYNC2LI1 are compromised regarding their ability to interact with DYNC2H1 and WDR60. When expressed in DYNC2LI1-knockout cells, deletion variants of DYNC2LI1 were unable to rescue the ciliary defects of these cells, whereas missense variants, as well as wild-type DYNC2LI1, restored the normal phenotype. DYNC2LI1-knockout cells coexpressing one pathogenic deletion variant together with wild-type DYNC2LI1 demonstrated a normal phenotype. In striking contrast, DYNC2LI1-knockout cells coexpressing the deletion variant in combination with a missense variant, which mimics the situation of cells of compound heterozygous ciliopathy individuals, demonstrated ciliary defects. Thus, DYNC2LI1 deletion variants found in individuals with skeletal ciliopathies cause ciliary defects when combined with a missense variant, which expressed on its own does not cause substantial defects.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Karl F Lechtreck ◽  
Yi Liu ◽  
Jin Dai ◽  
Rama A Alkhofash ◽  
jack Butler ◽  
...  

Intraflagellar transport (IFT) carries proteins into flagella but how IFT trains interact with the large number of diverse proteins required to assemble flagella remains largely unknown. Here, we show that IFT of radial spokes in Chlamydomonas requires ARMC2/PF27, a conserved armadillo repeat protein associated with male infertility and reduced lung function. Chlamydomonas ARMC2 was highly enriched in growing flagella and tagged ARMC2 and the spoke protein RSP3 comigrated on anterograde trains. In contrast, a cargo and an adapter of inner and outer dynein arms moved independently of ARMC2, indicating that unrelated cargoes distribute stochastically onto the IFT trains. After concomitant unloading at the flagellar tip, RSP3 attached to the axoneme whereas ARMC2 diffused back to the cell body. In armc2/pf27 mutants, IFT of radial spokes was abolished and the presence of radial spokes was limited to the proximal region of flagella. We conclude that ARMC2 is a cargo adapter required for IFT of radial spokes to ensure their assembly along flagella. ARMC2 belongs to a growing class of cargo-specific adapters that enable flagellar transport of preassembled axonemal substructures by IFT.


2021 ◽  
Author(s):  
Michael Clupper ◽  
Rachael Gill ◽  
Malek Elsayyid ◽  
Denis Touroutine ◽  
Jeffrey L. Caplan ◽  
...  

Extracellular vesicles (EVs) are bioactive lipid-bilayer enclosed particles released from nearly all cells. One specialized site for EV shedding is the primary cilium, a conserved signaling organelle. The mechanisms underlying cargo enrichment and biogenesis of heterogeneous EVs shed from cilia are unclear. Here we discover the conserved ion channel CLHM-1 as a new ciliary EV cargo. Using super-resolution microscopy, we imaged EVs released into the environment from sensory neuron cilia of C. elegans expressing fluorescently-tagged CLHM-1 and TRP polycystin-2 channel PKD-2 EV cargoes at endogenous levels. We find that these proteins are enriched in distinct EV subpopulations that are differentially shed in response to availability of hermaphrodite mating partners. Both CLHM-1 and PKD-2 localize to the ciliary base and middle segment of the cilium proper, but PKD-2 alone is present in the cilium distal tip and EVs shed from this site. CLHM-1 EVs released into the environment bud from a secondary site, the periciliary membrane compartment at the ciliary base. We show that individual heterotrimeric and homomeric kinesin-II motors have discrete impacts on the colocalization of PKD-2 and CLHM-1 in both cilia and EVs. Total loss of kinesin-II activity significantly decreases shedding of PKD-2 but not CLHM-1 EVs. Our data demonstrate that anterograde kinesin-II-dependent intraflagellar transport is required for selective enrichment of specific protein cargoes into heterogeneous EVs with different signaling potentials.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Kwangjin Park ◽  
Michel R. Leroux

Cilia harbor diffusion barriers for soluble and membrane proteins within their proximal-most transition zone (TZ) region and employ an intraflagellar transport (IFT) system to form dynamic motile and signaling compartments. In this issue, De-Castro and colleagues (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202010178) uncover a long-suspected role for the TZ in gating IFT particles.


Author(s):  
Hiroyuki Yamaguchi ◽  
Megumi Kitami ◽  
Karin H. Uchima Koecklin ◽  
Li He ◽  
Jianbo Wang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Hao ◽  
Yawen Chen ◽  
Xiumin Yan ◽  
Xueliang Zhu

AbstractCilia are microtubule-based hair-like organelles propelling locomotion and extracellular liquid flow or sensing environmental stimuli. As cilia are diffusion barrier-gated subcellular compartments, their protein components are thought to come from the cell body through intraflagellar transport or diffusion. Here we show that cilia locally synthesize proteins to maintain their structure and functions. Multicilia of mouse ependymal cells are abundant in ribosomal proteins, translation initiation factors, and RNA, including 18 S rRNA and tubulin mRNA. The cilia actively generate nascent peptides, including those of tubulin. mRNA-binding protein Fmrp localizes in ciliary central lumen and appears to function in mRNA delivery into the cilia. Its depletion by RNAi impairs ciliary local translation and induces multicilia degeneration. Expression of exogenous Fmrp, but not an isoform tethered to mitochondria, rescues the degeneration defects. Therefore, local translation defects in cilia might contribute to the pathology of ciliopathies and other diseases such as Fragile X syndrome.


Author(s):  
Karina Perlaza ◽  
Mary Mirvis ◽  
Hiroaki Ishikawa ◽  
Wallace Marshall

Length control of flagella represents a simple and tractable system to investigate the dynamics of organelle size. Models for flagellar length control in the model organism, Chlamydomonas reinhardtii have focused on the length-dependence of the intraflagellar transport (IFT) system which manages the delivery and removal of axonemal subunits at the tip of the flagella. One of these cargoes, tubulin, is the major axonemal subunit, and its frequency of arrival at the tip plays a central role in size control models. However, the mechanisms determining tubulin dynamics at the tip are still poorly understood. We discovered a loss-of-function mutation that leads to shortened flagella, and found that this was an allele of a previously described gene, SHF1, whose molecular identity had not previously been determined.  We found that SHF1 encodes a Chlamydomonas ortholog of Crescerin, previously identified as a cilia-specific TOG-domain array protein that can bind tubulin via its TOG domains and increase tubulin polymerization rates. In this mutant, flagellar regeneration occurs with the same initial kinetics as wild-type cells, but plateaus at a shorter length. Using a computational model in which the flagellar microtubules are represented by a differential equation for flagellar length combined with a stochastic model for cytoplasmic microtubule dynamics, we found that our experimental results are best described by a model in which Crescerin/SHF1 binds tubulin dimers in the cytoplasm and transports them into the flagellum. We suggest that this TOG-domain protein is necessary to efficiently and preemptively increase intra-flagella tubulin levels to offset decreasing IFT cargo at the tip as flagellar assembly progresses.


2021 ◽  
Author(s):  
Yan-Xia Liu ◽  
Wei-Yue Sun ◽  
Bin Xue ◽  
Rui-Kai Zhang ◽  
Wen-Juan Li ◽  
...  

Ciliary receptors and their certain downstream signaling components undergo intraflagellar transport (IFT) as BBSome cargoes to maintain their ciliary dynamics for sensing and transducing extracellular stimuli inside the cell. Cargo laden BBSomes shed from retrograde IFT at the proximal ciliary region above the transition zone (TZ) followed by diffusing through the TZ for ciliary retrieval, while how the BBSome barrier passage is controlled remains elusive. Here, we show that the BBSome is a major effector of the Arf-like 3 (ARL3) GTPase in Chlamydomonas. Under physiological condition, ARL3GDP binds the membrane for diffusing into and residing in cilia. Following a nucleotide conversion, ARL3GTP dissociates with the ciliary membrane and binds and recruits the IFT-detached and cargo (phospholipase D, PLD)-laden BBSome at the proximal ciliary region to diffuse through the TZ and out of cilia. ARL3 deficiency impairs ciliary signaling, e.g. phototaxis of Chlamydomonas cells, by disrupting BBSome ciliary retrieval, providing a mechanistic understanding behind BBSome ciliary turnover required for ciliary signaling.


Sign in / Sign up

Export Citation Format

Share Document